The Annals of Applied Probability

On the pricing of contingent claims under constraints

I. Karatzas and S. G. Kou

Full-text: Open access


We discuss the problem of pricing contingent claims, such as European call options, based on the fundamental principle of "absence of arbitrage" and in the presence of constraints on portfolio choice, for example, incomplete markets and markets with short-selling constraints. Under such constraints, we show that there exists an arbitrage-free interval which contains the celebrated Black-Scholes price (corresponding to the unconstrained case); no price in the interior of this interval permits arbitrage, but every price outside the interval does. In the case of convex constraints, the endpoints of this interval are characterized in terms of auxiliary stochastic control problems, in the manner of Cvitanić and Karatzas. These characterizations lead to explicit computations, or bounds, in several interesting cases. Furthermore, a unique fair price $\hat{p}$ is selected inside this interval, based on utility maximization and "marginal rate of substitution" principles. Again, characterizations are provided for $\hat{p}$, and these lead to very explicit computations. All these results are also extended to treat the problem of pricing contingent claims in the presence of a higher interest rate for borrowing. In the special case of a European call option in a market with constant coefficients, the endpoints of the arbitrage-free interval are the Black-Scholes prices corresponding to the two different interest rates, and the fair price coincides with that of Barron and Jensen.

Article information

Ann. Appl. Probab., Volume 6, Number 2 (1996), 321-369.

First available in Project Euclid: 18 October 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 90A09 93E20: Optimal stochastic control 60H30: Applications of stochastic analysis (to PDE, etc.)
Secondary: 60G44: Martingales with continuous parameter 90A10 90A16 49N15: Duality theory

Pricing of contingent claims constrained portfolios incomplete markets two different interest rates Black-Scholes formula utility maximization stochastic control martingale representations equivalent martingale measures minimization of relative entropy


Karatzas, I.; Kou, S. G. On the pricing of contingent claims under constraints. Ann. Appl. Probab. 6 (1996), no. 2, 321--369. doi:10.1214/aoap/1034968135.

Export citation


  • Barron, E. and Jensen, R. (1990). A stochastic control approach to the pricing of options. Math. Oper. Res. 15 49-79.
  • Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. J. Political Economy 81 637-659.
  • Cox, J. and Ross, S. (1976). The valuation of options for alternative stochastic processes. J. Financial Economics 3 145-166.
  • Cox, J. and Rubinstein, M. (1984). Option Markets. Prentice-Hall, Englewood Cliffs, NJ.
  • Crandall, M. G. and P.-L. Lions (1983). Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 1-42.
  • Cvitani´c, J. and Karatzas, I. (1992). Convex duality in constrained portfolio optimization. Ann. Appl. Probab. 2 767-818.
  • Cvitani´c, J. and Karatzas, I. (1993). Hedging contingent claims with constrained portfolios. Ann. Appl. Probab. 3 652-681.
  • Davis, M. (1994). A general option pricing formula. Preprint, Imperial College, London.
  • Duffie, D. (1992). Dy namic Assets Pricing Theory. Princeton Univ. Press.
  • Duffie, D. and Skiadas, C. (1991). Continuous-time security pricing: a utility gradient approach. Preprint, Stanford Univ.
  • El Karoui, N. and Quenez, M. C. (1995). Dy namic programming and the pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33 29-66.
  • Fleming, W. H. and Soner, H. M. (1993). Controlled Markov Processes and Viscosity Solutions. Springer, New York.
  • Foldes, L. P. (1990). Conditions for optimality in the infinite-horizon portfolio-cum-savings problem with semimartingale investments. Stochastics Stochastics Rep. 29 133-171.
  • F ¨ollmer, H. and Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In Applied Stochastic Analy sis (M. Davis, and R. Elliott, eds.) 389-414. Gordon and Breach, New York.
  • F ¨ollmer, H. and Sondermann, D. (1986). Hedging of nonredundant contingent claims. In Contributions to Mathematical Economics in Honor of Gerard Debreu (W. Hildenbrand and A. Mas-Collel, eds.) 205-223. North-Holland, Amsterdam.
  • Friedman, A. (1964). Partial Differential Equations of Parabolic Ty pe. Prentice-Hall, Englewood Cliffs, NJ.
  • Goldman, M. B., Sosin, H. B. and Gatto, M. A. (1979). Path-dependent options. J. Finance 34 1111-1127.
  • Harrison, J. M. and Kreps, D. M. (1979). Martingales and arbitrage in multi-period security markets. J. Economic Theory 20 381-408.
  • Harrison, M. and Pliska, S. R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Process. Appl. 11 215-260.
  • Hodges, S. D. and Neuberger, A. (1989). Optimal replication of contingent claims under transaction costs. Review of Futures Markets 8 222-239.
  • Hofmann, N., Platen, E. and Schweizer, M. (1992). Option pricing under incompleteness and stochastic volatility. Mathematical Finance 2 153-187.
  • Karatzas, I. (1989). Optimization problems in the theory of continuous trading. SIAM J. Control Optim. 27 1221-1259.
  • Karatzas, I., Lehoczky, J. P., Shreve, S. E. and Xu, G. L. (1991). Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29 702-730.
  • Karatzas, I. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Springer, New York.
  • Karatzas, I. and Shreve, S. (1997). Methods of Mathematical Finance. Springer, New York. To appear.
  • Merton, R. C. (1973). Theory of rational option pricing. Bell J. Econom. Manag. Sci. 4 141-183.
  • Meyer, P. A. (1976). Un Cours sur les Int´egrales Stochastiques. Lecture Notes in Math. 511 245- 398. Springer, Berlin.
  • My neni, R. (1992). American option. Ann. Appl. Probab. 2 1-23.
  • Rockafellar, R. T. (1970). Convex Analy sis. Princeton Univ. Press.
  • Shreve, S. E. and Soner, H. M. (1994). Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4 609-693.