The Annals of Applied Probability

Turbulent diffusion in Markovian flows

Albert Fannjiang and Tomasz Komorowski

Full-text: Open access

Abstract

We prove turbulent diffusion theorems for Markovian velocity fields which either are mixing in time or have stationary vector potentials.

Article information

Source
Ann. Appl. Probab., Volume 9, Number 3 (1999), 591-610.

Dates
First available in Project Euclid: 21 August 2002

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1029962805

Digital Object Identifier
doi:10.1214/aoap/1029962805

Mathematical Reviews number (MathSciNet)
MR1722274

Zentralblatt MATH identifier
0960.60034

Subjects
Primary: 60F17: Functional limit theorems; invariance principles 35B27: Homogenization; equations in media with periodic structure [See also 74Qxx, 76M50]
Secondary: 60G44: Martingales with continuous parameter

Keywords
Turbulent diffusion Markovian flows

Citation

Fannjiang, Albert; Komorowski, Tomasz. Turbulent diffusion in Markovian flows. Ann. Appl. Probab. 9 (1999), no. 3, 591--610. doi:10.1214/aoap/1029962805. https://projecteuclid.org/euclid.aoap/1029962805


Export citation

References

  • Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • Carmona, R. A. and Xu, L. (1997). Homogenization for time dependent 2-d incompressible Gaussian flows. Ann. Appl. Probab. 7 265-279.
  • Dedik, P. E. and Subin, M. A. (1982). Random pseudodifferential operators and the stabilization of solutions of parabolic equations with random coefficients. Math. USSR Sb. 33-52.
  • Doukhan, P. (1994). Mixing Properties and Examples. Lecture Notes in Statist. 85 Springer, New York.
  • Fannjiang, A. C. (1998). Anomalous diffusion in random flows. In Mathematics of Multiscale Materials (K. M. Golden, G. R. Grimmett, R. D. James, G. W. Milton and P. N. Sen, eds.) 99 81-99.
  • Fannjiang, A. C. and Komorowski, T. (1999). An invariance principle for diffusions in turbulence. Ann. Probab. 27 751-781.
  • Fannjiang, A. C. and Komorowski, T. (1998). Frozen path approximation for turbulent transport: from Tay lor-Kubo formula to fractional Brownian motion. Unpublished manuscript.
  • Foguel, S. (1969). Ergodic Theory Of Markov Processes. Van Nostrand, New York.
  • Frisch, U. (1996). Turbulence. Cambridge Univ. Press.
  • Fukushima, M. (1980). Dirichlet Forms and Markov Processes. North-Holland, Amsterdam.
  • Helland, X. (1982). Central limit theorems for martingales with discrete or continuous time, Scand. J. Statist. 9 79-94.
  • Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phy s. 104 1-19.
  • Komorowski, T. and Papanicolaou, G. C. (1997). Motion in a Gaussian, incompressible flow. Ann. Appl. Probab. 7 229-264.
  • Kraichnan, R. H. (1970). Diffusion by a random velocity field. Phy s. Fluids 13 22-31.
  • Ma, Z. and R ¨ockner, M. (1992). Introduction to the Theory of (Non-Sy mmetric) Dirichlet Forms. Springer, New York.
  • McComb, W. D. (1990). The physics of Fluid Turbulence. Oxford Univ. Press.
  • Olla, S. (1994). Homogenization of diffusion processes in random fields. Centre de Math´ematiques Appliqu´ees. Unpublished manuscript.
  • Port, S. C. and Stone, C. J. (1976). Random measures and their application to motion in an incompressible fluid. J. Appl. Probab. 13 499-506.
  • Rosenblatt, M. (1971). Markov Processes. Structure and Asy mptotic Behavior. Springer, New York.