The Annals of Applied Probability

Perturbation analysis and Malliavin calculus

L. Decreusefond

Full-text: Open access


Using the Malliavin calculus, we give a unified treatment of the so-called perturbation analysis of dynamic systems. Several applications are also given.

Article information

Ann. Appl. Probab., Volume 8, Number 2 (1998), 496-523.

First available in Project Euclid: 9 August 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H07: Stochastic calculus of variations and the Malliavin calculus 60H30: Applications of stochastic analysis (to PDE, etc.)
Secondary: 60G55: Point processes

Chaos decomposition IPA light traffic LRM Malliavin calculus RPA sensitivity analysis simulation


Decreusefond, L. Perturbation analysis and Malliavin calculus. Ann. Appl. Probab. 8 (1998), no. 2, 496--523. doi:10.1214/aoap/1028903536.

Export citation


  • BACCELLI, F., KLEIN, M. and ZUy EV, S. 1995. Perturbation analysis of functionals of random measures. Adv. in Appl. Probab. 27 306 325. Z.
  • BASS, R. F. and CRANSTON, M. 1986. The Malliavin calculus for pure jump processes and applications to local time. Ann. Probab. 14 490 532. Z.
  • BIANE, P. 1989. Chaotic representation for finite Markov chains. Stochastics Stochastics Rep. 30 61 68. Z.
  • BICHTELER, K. and JACOD, J. 1983. Calcul de Malliavin pour les diffusions avec sauts: existence d'une densite dans le cas unidimensionnel. Seminaire de Probabilites XVII 132 157. ´ ´ ´ Springer, New York. Z.
  • BISMUT, J.-M. 1983. Calcul des variations stochastiques et processus de sauts. Zeitschrift fur ¨ Wahrscheinlichkeits Theory 63 147 235. Z.
  • BLASZCZy SZy N, B. 1995. Factorial moment expansion for stochastic sy stems. Stochastic Process. Z. Appl. 56 2 321 336. Z.
  • BREMAUD, P. 1992. Maximal coupling and rare perturbation sensitivity analysis. Queuing ´ Z. Sy stems Theory Appl. 11 4 307 333. Z.
  • BREMAUD, P. and VAZQUEZ-ABAD, F. J. 1992. On the pathwise computation of derivatives with ´ ´ respect to the rate of a point process: the phantom RPA method. Queuing Sy stems Z. Theory Appl. 10 3 249 269. Z.
  • DECREUSEFOND, L. 1994. Methode de perturbation pour les reseaux de files d'attente. Ph.D. ´ ´ ´ dissertation, Ecole Nationale Superieure des Telecommunications. ´ ´ ´ Z.
  • DEVETSIKIOTIS, M., WAEL, A. A.-Q., FREEBERSy SER, J. A. and TOWNSEND, J. K. 1993. Stochastic gradient techniques for the efficient simulation of high-speed networks using importance sampling. IEEE Trans. Comm. XX 751 756. Z.
  • GLASSERMAN, P. 1990. Gradient Estimation via Perturbation Analy sis. Kluwer, Dordrecht. Z.
  • GLy NN, P. W. 1987. Likelihood ratio gradient simulation: an overview. In Proceedings of the Z. 1987 Winter Simulation Conference A. Thesen, H. Grant and W. Kelton, eds.. Z.
  • HEIDELBERGER, P. 1987. Limitations of infinitesimal perturbation analysis. Technical Report, Bell Labs, Yorktown Heights, NY. Z.
  • HO, Y. C. and CAO, X. R. 1983. Perturbation analysis and optimization of queueing networks. J. Optim. Theory Appl. 40 559 582. Z.
  • HO, Y. C., CAO, X. R. and CASSANDRAS, C. 1983. Infinitesimal and finite perturbation analysis for queueing networks. Automatica 19 439 445. Z.
  • JACOD, J. 1979. Calcul Stochastique et Problemes de Martingales. Springer, Berlin. Z. L'ECUy ER, P. 1990. A unified view of the IPA, SF and LR gradient estimation techniques. Management Science 36 1364 1383. Z.
  • MALLIAVIN, P. 1978. Stochastic calculus of variations and hy poelliptic operators. In Proceedings Z. of the International Sy mposium on S.D.E. K. Ito, ed..
  • MOLLER, J. and ZUy EV, S. A. 1996. Gamma-ty pe results and other related properties of Poisson processes. Adv. in Appl. Probab. 28 662 673. Z.
  • NORRIS, J. R. 1987. Integration for jump processes. Seminaire de Probabilites XXII 271 315. ´ ´ Springer, Berlin.Z.
  • NUALART, D. and VIVES, J. 1988. Anticipative calculus for the Poisson process based on the Fock space. Seminaire de Probabilites XXIV 154 165. Springer, Berlin. ´ ´ Z.
  • PRIVAULT, N. 1994. Chaotic and variational calculus in discrete and continuous time for the Poisson process. Stochastics Stochastics Rep. 51 83 109. Z.
  • REIMAN, M. I. and WEISS, A. 1989a. Light traffic derivatives via likelihood ratios. IEEE Trans. Z. Inform. Theory 35 3. Z.
  • REIMAN, M. I. and WEISS, A. 1989b. Sensitivity analysis via likelihood ratios. Oper. Res. 37 830 844.Z.
  • RUIZ DE CHAVEZ, J. 1983. Sur les integrales stochastiques multiples. Seminaire de Probabilites ´ ´ ´ XIX 248 261. Springer, Berlin. Z.
  • SURI, R. 1989. Perturbation analysis: The state of the art and research issues explained via the GI G 1 queue. Proc. IEEE 77 114 137. Z.
  • SURI, R. and ZAZANIS, M. 1988. Perturbation analysis gives strongly consistent sensitivity estimates for the M G 1 queues. Management Science 34 39 64. ¨ Z.
  • USTUNEL, A. S. 1995. An Introduction to Analy sis on Wiener Space. Lecture Notes in Math. ¨ 1610. Springer, Berlin. Z.
  • ZUy EV, S. A. 1993. Russo's formula for Poisson point fields and its applications. Discrete Math. Appl. 3 63 73.