The Annals of Applied Probability

Dependent random graphs and spatial epidemics

Geoffrey R. Grimmett, Rinaldo B. Schinazi, and J. van den Berg

Full-text: Open access

Abstract

We extend certain exponential decay results of subcritical percolation to a class of locally dependent random graphs, introduced by Kuulasmaa as models for spatial epidemics on $\mathbb{Z}^d$. In these models, infected individuals eventually die (are removed) and are not replaced. We combine these results with certain continuity and rescaling arguments in order to improve our knowledge of the phase diagram of a modified epidemic model in which new susceptibles are born at some positive rate. In particular, we show that, throughout an intermediate phase where the infection rate lies between two certain critical values, no coexistence is possible for sufficiently small positive values of the recovery rate. This result provides a converse to results of Durrett and Neuhauser and Andjel and Schinazi. We show also that such an intermediate phase indeed exists for every $d \geq 1$ (i.e., that the two critical values mentioned above are distinct). An important technique is the general version of the BK inequality for disjoint occurrence, proved in 1994 by Reimer.

Article information

Source
Ann. Appl. Probab., Volume 8, Number 2 (1998), 317-336.

Dates
First available in Project Euclid: 9 August 2002

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1028903529

Digital Object Identifier
doi:10.1214/aoap/1028903529

Mathematical Reviews number (MathSciNet)
MR1624925

Zentralblatt MATH identifier
0946.92028

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Dependent percolation interacting particle system spatial epidemic critical value percolation

Citation

van den Berg, J.; Grimmett, Geoffrey R.; Schinazi, Rinaldo B. Dependent random graphs and spatial epidemics. Ann. Appl. Probab. 8 (1998), no. 2, 317--336. doi:10.1214/aoap/1028903529. https://projecteuclid.org/euclid.aoap/1028903529


Export citation

References

  • AIZENMAN, M. and BARSKY, D. J. 1987. Sharpness of the phase transition in percolation models. Comm. Math. Phy s. 108 489 526. Z.
  • AIZENMAN, M. and GRIMMETT, G. 1991. Strict monotonicity for critical points in percolation and ferromagnetic models. J. Statist. Phy s. 63 817 835. Z.
  • ANDJEL, E. and SCHINAZI, R. 1996. A complete convergence theorem for an epidemic model. J. Appl. Probab. 33 741 748. Z.
  • BERG, J. VAN DEN 1997. Some reflections on disjoint occurrences of events. Unpublished manuscript. Z.
  • BERG, J. VAN DEN and ERMAKOV, A. 1996. A new lower bound for the critical probability of site percolation on the square lattice. Random Structures Algorithms 8 199 212. Z.
  • BERG, J. VAN DEN and KESTEN, H. 1985. Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 556 569. Z.
  • BEZUIDENHOUT, C. E. and GRIMMETT, G. R. 1990. The critical contact process dies out. Ann. Probab. 18 1462 1482. Z.
  • DURRETT, R. 1992. Multicolor particle sy stems with large threshold and range. J. Theoret. Probab. 5 127 152. Z.
  • DURRETT, R. and NEUHAUSER, C. 1991. Epidemics with recovery in D 2. Ann. Appl. Probab. 1 189 206. Z.
  • DURRETT, R. and SCHINAZI, R. 1993. Asy mptotic critical value for a competition model. Ann. Appl. Probab. 3 1047 1066. Z.
  • GRIFFEATH, D. 1979. Additive and cancelative interacting particle sy stems. Lecture Notes in Math. 724. Springer, Berlin. Z.
  • GRIMMETT, G. R. 1989. Percolation. Springer, Berlin. Z.
  • GRIMMETT, G. R. 1996. Percolation and disordered sy stems. Ecole d'Ete de Probabilites de Saint ´ ´ Flour XXVI. Lecture Notes in Math. 153 300. Springer. Z.
  • HARRIS, T. E. 1974. Contact interactions on a lattice. Ann. Probab. 2 969 988. Z.
  • HARRIS, T. E. 1978. Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355 378. Z.
  • KESTEN, H. 1981. Analy ticity properties and power law estimates in percolation theory. J. Statist. Phy s. 25 717 756. Z.
  • KUULASMAA, K. 1982. The spatial general epidemic and locally dependent random graphs. J. Appl. Probab. 19 745 758. Z.
  • LIGGETT, T. M. 1985. Interacting Particle Sy stems. Springer, New York.
  • MENSHIKOV, M. V. 1986. Coincidence of critical points in percolation problems. Soviet Math. Dokl. 33 856 859. Z.
  • MENSHIKOV, M. V. and PELIKH, K. D. 1990. Percolation with several ty pes of defects. Estimates Z. of the critical probability on the square lattice. Math. Notes 46 38 47. In Russian. English translation in Math. Notes Acad. Sci. USSR 46 778 785. Z. Z
  • REIMER, D. 1997. Proof of the van de Berg Kesten inequality. Revised version of 1994 paper. entitled ``Butterflies.'' Unpublished manuscript.
  • CWI, KRUISLAAN 413 16 MILL LANE 1098 SJ AMSTERDAM CAMBRIDGE CB2 1SB THE NETHERLANDS UNITED KINGDOM E-MAIL: jvdberg@cwi.nl E-MAIL: g.r.grimmett@statslab.cam.ac.uk R. B. SCHINAZI MATHEMATICS DEPARTMENT UNIVERSITY OF COLORADO
  • COLORADO SPRINGS, COLORADO 80933 E-MAIL: schinazi@vision.uccs.edu