The Annals of Applied Probability

Is Network Traffic Appriximated by Stable Lévy Motion or Fractional Brownian Motion?

Thomas Mikosch, Sidney Resnick, Holger Rootzén, and Alwin Stegeman

Full-text: Open access

Abstract

Cumulative broadband network traffic is often thought to be well modeled by fractional Brownian motion (FBM). However, some traffic measurements do not show an agreement with the Gaussian marginal distribution assumption. We show that if connection rates are modest relative to heavy tailed connection length distribution tails, then stable Lévy motion is a sensible approximation to cumulative traffic over a time period. If connection rates are large relative to heavy tailed connection length distribution tails, then FBM is the appropriate approximation. The results are framed as limit theorems for a sequence of cumulative input processes whose connection rates are varying in such a way as to remove or induce long range dependence.

Article information

Source
Ann. Appl. Probab., Volume 12, Number 1 (2002), 23-68.

Dates
First available in Project Euclid: 12 March 2002

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1015961155

Digital Object Identifier
doi:10.1214/aoap/1015961155

Mathematical Reviews number (MathSciNet)
MR1890056

Zentralblatt MATH identifier
1021.60076

Subjects
Primary: 60K25: Queueing theory [See also 68M20, 90B22]
Secondary: 60F05: Central limit and other weak theorems 60F10: Large deviations 60F17: Functional limit theorems; invariance principles 60G18: Self-similar processes 60G55: Point processes

Keywords
Heavy tails regular variation Pareto tails self-similarity scaling infinite variance stable Lévy motion fractional Brownian motion Gaussian approximation ON/OFF process workload process cumulative input process input rate large deviations

Citation

Mikosch, Thomas; Resnick, Sidney; Rootzén, Holger; Stegeman, Alwin. Is Network Traffic Appriximated by Stable Lévy Motion or Fractional Brownian Motion?. Ann. Appl. Probab. 12 (2002), no. 1, 23--68. doi:10.1214/aoap/1015961155. https://projecteuclid.org/euclid.aoap/1015961155


Export citation

References

  • [1] ANANTHARAM, V. (1995). On the sojourn time of sessions at an atm buffer with long-range dependent input traffic. In Proceedings of the 34th IEEE Conference on Decision and Control 13-15. IEEE, New York.
  • [2] ARLITT, M. and WILLIAMSON, C. (1996). Web server workload characterization: the search for invariants. Master's thesis, Univ. Saskatchewan.
  • [3] BERAN, J. (1994). Statistical Methods for Long Memory Processes. Chapman and Hall, London.
  • [4] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • [5] BINGHAM, N. H., GOLDIE, C. M. and TEUGELS, J. L. (1987). Regular Variation. Cambridge Univ. Press.
  • [6] CLINE, D. B. H. and HSING, T. (1991). Large deviation probabilities for sums and maxima of random variables with heavy or subexponential tails. Preprint, Texas A&M Univ.
  • 66 MIKOSCH, RESNICK, ROOTZÉN AND STEGEMAN
  • [7] COX, D. R. (1984). Long-range dependence: a review. In Statistics: An Appraisal (H. A. David and H. T. David, eds.) 55-74. Iowa State Univ. Press.
  • [8] CROVELLA, M. and BESTAVROS, A. (1995). Explaining world wide web traffic self-similarity. Preprint. Available as TR-95-015 from crovella,bestcs.bu.edu.
  • [9] CROVELLA, M. and BESTAVROS, A. (1996). Self-similarity in world wide web traffic: evidence and possible causes. Performance Evaluation Rev. 24 160-169.
  • [10] CROVELLA, M. and BESTAVROS, A. (1997). Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans. Networking 5 835-846.
  • [11] CROVELLA, M., BESTAVROS, A. and TAQQU, M. (1996). Heavy-tailed probability distributions in the world wide web. Preprint.
  • [12] CROVELLA, M. KIM, G. and PARK, K. (1996). On the relationship between file sizes, transport protocols, and self-similar network traffic. In Proceedings of the Fourth International Conference on Network Protocols 171-180.
  • [13] CROVELLA, M., PARK, K. and KIM, G. (1997). On the effect of traffic self-similarity on network performance. In Proceedings of the SPIE International Conference on Performance and Control of Network Systems. SPIE, Billingham Washington.
  • [14] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New York.
  • [15] GUERIN, C. A., NYBERG, H., PERRIN, O. RESNICK, S. ROOTZÉN, H. and STARI CA, C.
  • (1999). Empirical testing of the infinite source Poisson data traffic model. Technical Report 1257, School of ORIE, Cornell Univ. Available at www.orie.cornell.edu.
  • [16] GUT, A. (1988). Stopped Random Walks: Limit Theorems and Applications. Springer, New York.
  • [17] HEATH, D. RESNICK, S. and SAMORODNITSKY, G. (1997). Patterns of buffer overflow in a class of queues with long memory in the input stream. Ann. Appl. Probab. 7 1021-1057.
  • [18] HEATH, D. RESNICK, S. and SAMORODNITSKY, G. (1998). Heavy tails and long range dependence in on/off processes and associated fluid models. Math. Oper. Res. 23 145- 165.
  • [19] HEATH, D. RESNICK, S. and SAMORODNITSKY, G. (1999). How system performance is affected by the interplay of averages in a fluid queue with long range dependence induced by heavy tails. Ann. Appl. Probab. 9 352-375.
  • [20] JELENKOVI ´C, P. R. and LAZAR, A. (1999). Asymptotic results for multiplexing subexponential on-off processes. Adv. Appl. Probab. 31 394-421.
  • [21] JELENKOVI ´C, P. R. and LAZAR, A. (1996). A network multiplexer with multiple time scale and subexponential arrivals. Stochastic Networks. Lecture Notes in Statist. 117 215-235. Springer, New York.
  • [22] KAJ, I. (1999). Convergence of scaled renewal processes o fractional brownian motion. Preprint, Dept. Mathematics, Uppsala Univ.
  • [23] KLÜPPELBERG, C. and MIKOSCH, T. (1995). Explosive Poisson shot noise processes with applications to risk reserves. Bernoulli 1 125-148.
  • [24] KONSTANTOPOULOS, T. and LIN, S.-J. (1998). Macroscopic models for long-range dependent network traffic. Queueing Systems Theory Appl. 28 215-243.
  • [25] KURTZ, T. (1996). Limit theorems for workload input models. In Stochastic Networks: Theory and Applications (S. Zachary F.P. Kelly and I. Ziedins, eds.) Clarendon Press, Oxford.
  • [26] LELAND, W. E., TAQQU, M. S., WILLINGER, W. and WILSON, D. V. (1993). On the selfsimilar nature of Ethernet traffic. ACM/SIGCOMM Computer Comm. Rev. 23 183-193.
  • [27] LELAND, W. E., TAQQU, M. S., WILLINGER, W. and WILSON, D. V. (1994). On the selfsimilar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Networking 2 1- 15.
  • [28] LEVY, J. and TAQQU, M. (2000). Renewal reward processes with heavy tailed interrenewal times and havy tailed rewards. Bernoulli 6 26-44.
  • [29] LIKHANOV, N., TSYBAKOV, B. and GEORGANAS, N. D. (1995). Analysis of an atm buffer with self-similar ("fractal") input traffic. In Proceedings of the 14th Annual IEEE INFOCOM 2 985-992. IEEE, New York.
  • [30] MIKOSCH, T. and STEGEMAN, A. (1999). The interplay between heavy tails and rates in selfsimilar network traffic. Technical report, Univ. Groningen, Dept. Mathematics. Available at www.cs.rug.nl/ eke/iwi/preprints/.
  • [31] NOLAN, J. P. (1998). Maximum likelihood estimation and diagnostics for stable processes. Available at http://www.cas.american.edu/ jpnolan/stable.html.
  • [32] PAXTON, V. and FLOYD, S. (1995). Wide-area traffic: The failure of poisson modeling. IEEE/ACM Trans. Networking 3 226-244.
  • [33] PETROV, V. V. (1975). Sums of Independent Random Variables. Springer, New York.
  • [34] PETROV, V. V. (1995). Limit Theorems of Probability Theory. Oxford Univ. Press.
  • [35] RESNICK, S. and SAMORODNITSKY, G. (1999). Activity periods of an infinite server queue and performance of certain heavy tailed fluid queues. Queueing Systems 33 43-71.
  • [36] RESNICK, S. and VAN DEN BERG, E. (2000). A test for nonlinearity of time series with infinite variance. Extremes 3 145-172.
  • [37] RESNICK, S. and VAN DEN BERG, E. (2000). Weak convergence of high-speed network traffic models. J. Appl. Probab. 37 575-597.
  • [38] RESNICK, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York.
  • [39] RESNICK, S. I. (1992). Adventures in Stochastic Processes. Birkhäuser, Boston.
  • [40] RESNICK, S. I. (1998). A Probability Path. Birkhäuser, Boston.
  • [41] RESNICK, S. I. and ROOTZÉN, H. (2000). Self-similar communication models and very heavy tails. Ann. Appl. Probab. 10 753-778.
  • [42] SAMORODNITSKY, G. and TAQQU, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall, New York.
  • [43] STEGEMAN, A. (1998). Modeling traffic in high-speed networks by on/off models. Master's thesis, Dept. Mathematics, Univ. Groningen.
  • [44] TAQQU, M. and LEVY, J. (1986). Using renewal processes to generate long-range dependence and high variability. Dependence in Probability and Statistics (E. Eberlein and M. Taqqu, eds.) 73-89. Birkhäuser, Boston.
  • [45] TAQQU, M., WILLINGER, W. and SHERMAN, R. (1997). Proof of a fundamental result in self-similar traffic modeling. Computer Comm. Rev. 27 5-23.
  • [46] TSOUKATOS, K. P. and MAKOWSKI, A. (1997). Heavy traffic analysis for a multiplexer driven by M/G/ input processes. In Proceedings of the 15th International Teletraffic Congress, Washington DC (V. Ramaswami and P. E. Wirth, eds.) 497-506.
  • [47] WHITT, W. (1999). Limits for cumulative input processes to queues. Preprint, AT&T Labs, Murray Hill, NJ.
  • [48] WHITT, W. (1999). On the Skorohod M-topologies. Preprint, AT&T Labs, Murry Hill, NJ.
  • [49] WHITT, W. (1999). The reflection map is Lipschitz with appropriate Skorohod M-metrics. Preprint, AT&T Labs, Murray Hill, NJ.
  • [50] WILLINGER, W. TAQQU, M. S., SHERMAN, R. and WILSON, D. (1995). Self-similarity through high variability: statistical analysis of ethernet lan traffic at the source level. Comput. Comm. Rev. 25 100-113.
  • 68 MIKOSCH, RESNICK, ROOTZÉN AND STEGEMAN
  • ITHACA, NEW YORK 14853 E-MAIL: sid@orie.cornell.edu