The Annals of Applied Probability

Strong approximation of the empirical process of Garch sequences

István Berkes and Lajos Horváth

Full-text: Open access

Abstract

We obtain a strong approximation for the empirical process of n observe delements of a GARCH sequence. The weak convergence of the empirical process and the law of the iterated logarithm are immediate consequences.

Article information

Source
Ann. Appl. Probab., Volume 11, Number 3 (2001), 789-809.

Dates
First available in Project Euclid: 5 March 2002

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1015345349

Digital Object Identifier
doi:10.1214/aoap/1015345349

Mathematical Reviews number (MathSciNet)
MR1865024

Zentralblatt MATH identifier
1014.60033

Subjects
Primary: 60F17: Functional limit theorems; invariance principles
Secondary: 60G50: Sums of independent random variables; random walks

Keywords
GARCH ($p, q$) empirical process strong approximation rates of convergence estimates for increments

Citation

Berkes, István; Horváth, Lajos. Strong approximation of the empirical process of Garch sequences. Ann. Appl. Probab. 11 (2001), no. 3, 789--809. doi:10.1214/aoap/1015345349. https://projecteuclid.org/euclid.aoap/1015345349


Export citation

References

  • Berkes, I. and Philipp, W. (1979). Approximation theorems for independent and weakly dependent random vectors. Ann.Probab.7 29-54.
  • Bhattacharya, R. N. and Rao, R. R. (1976). Normal Approximation and Asymptotic Expansions. Wiley, New York.
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J.Econometrics 31 307-327. Bougerol, P. and Picard, N. (1992a). Strict stationary of generalizedautoregressive processes. Ann.Probab.20 1714-1730. Bougerol, P. and Picard, N. (1992b). Stationarity of GARCH processes andof some nonnegative time series. J.Econometrics 52 115-127.
  • Davis, R. A., Mikosch, T. and Basrak, B. (1999). Sample ACF of multivariate stochastic recurrence equations with applications to GARCH. Preprint.
  • Dudley, R. M. (1976). Probabilities andmetrics: convergence of laws on metric spaces, with a view to statistical testing. Aarhus Univ.Lecture Notes Ser.45.
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of the UnitedKingdom inflation. Econometrica 50 987-1008.
  • Gouri eroux, C. (1997). ARCH Models and Financial Applications. Springer, Berlin.
  • Kingman, J. F. C. (1973). Subadditive ergodic theory. Ann.Probab.1 883-909.
  • Lai, T. L. (1974). Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaussian processes. Z.Wahrsch.Verw.Gebiete 29 7-19.
  • Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer, Berlin.
  • Nelson, D. B. (1990). Stationarity andpersistence in GARCH(1, 1) model. Econometric Theory 6 318-334.
  • Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, Berlin.
  • Petrov, V. V. (1995). Limit Theorems of Probability Theory. Clarendon Press, Oxford.
  • Philipp, W. (1984). Invariance principles for sums of mixing random elements and the multivariate empirical process. In Limit Theorems in Probability and Statistics (I. Berkes, E. Cs´aki andP. R´ev´esz, eds.) 843-873. North-Holland, Amsterdam.
  • Philipp, W. and Pinzur, L. (1980). Almost sure approximation theorems for the multivariate empirical process. Z.Wahrsch.Verw.Gebiete 54 1-13.
  • Strassen, V. (1964). An invariance principle for the law of the iteratedlogarithm. Z.Wahrsch. Verw.Gebiete 3 211-226.