Algebra & Number Theory

Theta operators on unitary Shimura varieties

Ehud de Shalit and Eyal Z. Goren

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We define a theta operator on p-adic vector-valued modular forms on unitary groups of arbitrary signature, over a quadratic imaginary field in which p is inert. We study its effect on Fourier–Jacobi expansions and prove that it extends holomorphically beyond the μ-ordinary locus, when applied to scalar-valued forms.

Article information

Source
Algebra Number Theory, Volume 13, Number 8 (2019), 1829-1877.

Dates
Received: 1 January 2018
Revised: 9 January 2019
Accepted: 13 June 2019
First available in Project Euclid: 29 October 2019

Permanent link to this document
https://projecteuclid.org/euclid.ant/1572314506

Digital Object Identifier
doi:10.2140/ant.2019.13.1829

Mathematical Reviews number (MathSciNet)
MR4017536

Zentralblatt MATH identifier
07118654

Subjects
Primary: 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35]
Secondary: 14G35: Modular and Shimura varieties [See also 11F41, 11F46, 11G18]

Keywords
Shimura variety theta operator modular form

Citation

de Shalit, Ehud; Goren, Eyal Z. Theta operators on unitary Shimura varieties. Algebra Number Theory 13 (2019), no. 8, 1829--1877. doi:10.2140/ant.2019.13.1829. https://projecteuclid.org/euclid.ant/1572314506


Export citation

References

  • F. Andreatta and E. Z. Goren, Hilbert modular forms: mod $p$ and $p$-adic aspects, Mem. Amer. Math. Soc. 819, Amer. Math. Soc., Providence, RI, 2005.
  • M. Artin, “Algebraic approximation of structures over complete local rings”, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58.
  • A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of locally symmetric varieties, Lie Groups Hist. Frontiers Appl. 4, Math. Sci. Press, Brookline, MA, 1975.
  • S. Böcherer and S. Nagaoka, “On mod $p$ properties of Siegel modular forms”, Math. Ann. 338:2 (2007), 421–433.
  • O. Bültel and T. Wedhorn, “Congruence relations for Shimura varieties associated to some unitary groups”, J. Inst. Math. Jussieu 5:2 (2006), 229–261.
  • R. F. Coleman, “Classical and overconvergent modular forms”, Invent. Math. 124:1-3 (1996), 215–241.
  • R. F. Coleman, F. Q. Gouvêa, and N. Jochnowitz, “$E_2$, $\Theta$, and overconvergence”, Int. Math. Res. Not. 1995:1 (1995), 23–41.
  • M. Courtieu and A. Panchishkin, Non-Archimedean $L$-functions and arithmetical Siegel modular forms, 2nd ed., Lecture Notes in Math. 1471, Springer, 2004.
  • E. E. Eischen, “$p$-adic differential operators on automorphic forms on unitary groups”, Ann. Inst. Fourier $($Grenoble$)$ 62:1 (2012), 177–243.
  • E. Eischen and E. Mantovan, “$p$-adic families of automorphic forms in the $\mu$-ordinary setting”, 2017. To appear in Amer. J. Math.
  • E. Eischen, J. Fintzen, E. Mantovan, and I. Varma, “Differential operators and families of automorphic forms on unitary groups of arbitrary signature”, Doc. Math. 23 (2018), 445–495.
  • G. Faltings and C.-L. Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik $($3$)$ 22, Springer, 1990.
  • W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton Univ. Press, 1993.
  • W. Fulton and J. Harris, Representation theory: a first course, Grad. Texts in Math. 129, Springer, 1991.
  • A. Ghitza and A. McAndrew, “Theta operators on Siegel modular forms and Galois representations”, preprint, 2016.
  • W. Goldring and M.-H. Nicole, “The $\mu$-ordinary Hasse invariant of unitary Shimura varieties”, J. Reine Angew. Math. 728 (2017), 137–151.
  • E. Z. Goren, “Hilbert modular forms modulo $p^m$: the unramified case”, J. Number Theory 90:2 (2001), 341–375.
  • B. H. Gross, “A tameness criterion for Galois representations associated to modular forms (mod $p$)”, Duke Math. J. 61:2 (1990), 445–517.
  • A. Grothendieck, Groupes de Barsotti–Tate et cristaux de Dieudonné (Montréal, 1970), Séminaire Math. Supér. 45, Presses Univ. Montréal, 1974.
  • T. Ichikawa, “Vector-valued $p$-adic Siegel modular forms”, J. Reine Angew. Math. 690 (2014), 35–49.
  • J. C. Jantzen, Representations of algebraic groups, 2nd ed., Math. Surv. Monogr. 107, Amer. Math. Soc., Providence, RI, 2003.
  • N. Jochnowitz, “A study of the local components of the Hecke algebra mod $l$”, Trans. Amer. Math. Soc. 270:1 (1982), 253–267.
  • C. Johansson, “Classicality for small slope overconvergent automorphic forms on some compact PEL Shimura varieties of type C”, Math. Ann. 357:1 (2013), 51–88.
  • N. M. Katz, “Higher congruences between modular forms”, Ann. of Math. $(2)$ 101 (1975), 332–367.
  • N. M. Katz, “A result on modular forms in characteristic $p$”, pp. 53–61 in Modular functions of one variable, V (Bonn, Germany, 1976), edited by J.-P. Serre and D. B. Zagier, Lecture Notes in Math. 601, Springer, 1977.
  • N. M. Katz, “$p$-adic $L$-functions for CM fields”, Invent. Math. 49:3 (1978), 199–297.
  • N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Ann. of Math. Stud. 108, Princeton Univ. Press, 1985.
  • R. E. Kottwitz, “Points on some Shimura varieties over finite fields”, J. Amer. Math. Soc. 5:2 (1992), 373–444.
  • K.-W. Lan, Arithmetic compactifications of PEL-type Shimura varieties, London Math. Soc. Monogr. Series 36, Princeton Univ. Press, 2013.
  • K.-W. Lan, “Boundary strata of connected components in positive characteristics”, 2015. Appendix to X. Wan, “Families of nearly ordinary Eisenstein series on unitary groups”, Algebra Number Theory 9:9 (2015), 1955–2054.
  • E. Mantovan, “On the cohomology of certain PEL-type Shimura varieties”, Duke Math. J. 129:3 (2005), 573–610.
  • B. Moonen, “Group schemes with additional structures and Weyl group cosets”, pp. 255–298 in Moduli of abelian varieties (Texel Island, Netherlands, 1999), edited by C. Faber et al., Progr. Math. 195, Birkhäuser, Basel, 2001.
  • B. Moonen, “Serre–Tate theory for moduli spaces of PEL type”, Ann. Sci. École Norm. Sup. $(4)$ 37:2 (2004), 223–269.
  • D. Mumford, “An analytic construction of degenerating abelian varieties over complete rings”, Compos. Math. 24 (1972), 239–272.
  • T. Oda, “The first de Rham cohomology group and Dieudonné modules”, Ann. Sci. École Norm. Sup. $(4)$ 2 (1969), 63–135.
  • F. Oort, “A stratification of a moduli space of abelian varieties”, pp. 345–416 in Moduli of abelian varieties (Texel Island, Netherlands, 1999), edited by C. Faber et al., Progr. Math. 195, Birkhäuser, Basel, 2001.
  • A. A. Panchishkin, “The Maass–Shimura differential operators and congruences between arithmetical Siegel modular forms”, Mosc. Math. J. 5:4 (2005), 883–918.
  • J.-P. Serre, “Congruences et formes modulaires (d'après H. P. F. Swinnerton-Dyer)”, pp. [exposé] 416, pp. 319–338 in Séminaire Bourbaki 1971/1972, Lecture Notes in Math. 317, Springer, 1973.
  • J.-P. Serre, “Formes modulaires et fonctions zêta $p$-adiques”, pp. 191–268 in Modular functions of one variable, III (Antwerp, 1972), edited by W. Kuyk and J.-P. Serre, Lecture Notes in Math. 350, Springer, 1973. Correction in Modular functions of one variable, IV, Lecture Notes in Math. 476, Springer, 1975, pp. 149–150.
  • E. de Shalit and E. Z. Goren, “A theta operator on Picard modular forms modulo an inert prime”, Res. Math. Sci. 3 (2016), art. id. 28.
  • E. de Shalit and E. Z. Goren, “Supersingular curves on Picard modular surfaces modulo an inert prime”, J. Number Theory 171 (2017), 391–421.
  • E. de Shalit and E. Z. Goren, “Foliations on unitary Shimura varieties in positive characteristic”, Compos. Math. 154:11 (2018), 2267–2304.
  • G. Shimura, Arithmeticity in the theory of automorphic forms, Math. Surv. Monogr. 82, Amer. Math. Soc., Providence, RI, 2000.
  • C. Skinner and E. Urban, “The Iwasawa main conjectures for ${\rm GL}_2$”, Invent. Math. 195:1 (2014), 1–277.
  • H. P. F. Swinnerton-Dyer, “On $l$-adic representations and congruences for coefficients of modular forms”, pp. 1–55 in Modular functions of one variable, III (Antwerp, 1972), edited by W. Kuyk and J.-P. Serre, Lecture Notes in Math. 350, Springer, 1973. Correction in Modular functions of one variable, IV, Lecture Notes in Math. 476, Springer, 1975, pp. 149.
  • E. Viehmann and T. Wedhorn, “Ekedahl–Oort and Newton strata for Shimura varieties of PEL type”, Math. Ann. 356:4 (2013), 1493–1550.
  • T. Wedhorn, “Ordinariness in good reductions of Shimura varieties of PEL-type”, Ann. Sci. École Norm. Sup. $(4)$ 32:5 (1999), 575–618.
  • T. Wedhorn, “The dimension of Oort strata of Shimura varieties of PEL-type”, pp. 441–471 in Moduli of abelian varieties (Texel Island, Netherlands, 1999), edited by C. Faber et al., Progr. Math. 195, Birkhäuser, Basel, 2001.
  • A. W. L. J. Wooding, The Ekedahl–Oort stratification of unitary Shimura varieties, Ph.D. thesis, McGill University, 2016.