Algebra & Number Theory

Iwasawa theory for Rankin-Selberg products of $p$-nonordinary eigenforms

Kâzım Büyükboduk, Antonio Lei, David Loeffler, and Guhan Venkat

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let f and g be two modular forms which are nonordinary at p. The theory of Beilinson–Flach elements gives rise to four rank-one nonintegral Euler systems for the Rankin–Selberg convolution fg, one for each choice of p-stabilisations of f and g. We prove (modulo a hypothesis on nonvanishing of p-adic L-functions) that the p-parts of these four objects arise as the images under appropriate projection maps of a single class in the wedge square of Iwasawa cohomology, confirming a conjecture of Lei–Loeffler–Zerbes.

Furthermore, we define an explicit logarithmic matrix using the theory of Wach modules, and show that this describes the growth of the Euler systems and p-adic L-functions associated to fg in the cyclotomic tower. This allows us to formulate “signed” Iwasawa main conjectures for fg in the spirit of Kobayashi’s ±-Iwasawa theory for supersingular elliptic curves; and we prove one inclusion in these conjectures under our running hypotheses.

Article information

Source
Algebra Number Theory, Volume 13, Number 4 (2019), 901-941.

Dates
Received: 12 February 2018
Revised: 13 September 2018
Accepted: 10 February 2019
First available in Project Euclid: 18 May 2019

Permanent link to this document
https://projecteuclid.org/euclid.ant/1558144824

Digital Object Identifier
doi:10.2140/ant.2019.13.901

Mathematical Reviews number (MathSciNet)
MR3951583

Zentralblatt MATH identifier
07059759

Subjects
Primary: 11R23: Iwasawa theory
Secondary: 11F11: Holomorphic modular forms of integral weight 11R20: Other abelian and metabelian extensions

Keywords
Iwasawa theory elliptic modular forms nonordinary primes

Citation

Büyükboduk, Kâzım; Lei, Antonio; Loeffler, David; Venkat, Guhan. Iwasawa theory for Rankin-Selberg products of $p$-nonordinary eigenforms. Algebra Number Theory 13 (2019), no. 4, 901--941. doi:10.2140/ant.2019.13.901. https://projecteuclid.org/euclid.ant/1558144824


Export citation

References

  • D. Benois, “Selmer complexes and $p$-adic Hodge theory”, pp. 36–88 in Arithmetic and geometry, edited by L. Dieulefait et al., London Math. Soc. Lecture Note Ser. 420, Cambridge Univ. Press, 2015.
  • L. Berger, “Représentations $p$-adiques et équations différentielles”, Invent. Math. 148:2 (2002), 219–284.
  • L. Berger, “Bloch and Kato's exponential map: three explicit formulas”, Doc. Math. Extra Volume: Kazuya Kato's fiftieth birthday (2003), 99–129.
  • L. Berger, “Limites de représentations cristallines”, Compos. Math. 140:6 (2004), 1473–1498.
  • L. Berger, “Équations différentielles $p$-adiques et $(\phi,N)$-modules filtrés”, pp. 13–38 in Représentations $p$-adiques de groupes $p$-adiques, I: Représentations galoisiennes et $(\phi,\Gamma)$-modules, Astérisque 319, Société Mathématique de France, Paris, 2008.
  • K. Büyükboduk and A. Lei, “Coleman-adapted Rubin–Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties”, Proc. Lond. Math. Soc. $(3)$ 111:6 (2015), 1338–1378.
  • K. Büyükboduk and A. Lei, “Iwasawa theory of elliptic modular forms over imaginary quadratic fields at non-ordinary primes”, preprint, 2016.
  • K. Büyükboduk, A. Lei, and G. Venkat, “Iwasawa theory for Symmetric Square of non-$p$-ordinary eigenforms”, preprint, 2018.
  • F. Cherbonnier and P. Colmez, “Théorie d'Iwasawa des représentations $p$-adiques d'un corps local”, J. Amer. Math. Soc. 12:1 (1999), 241–268.
  • J.-M. Fontaine, “Représentations $p$-adiques des corps locaux, I”, pp. 249–309 in The Grothendieck Festschrift Volume 2, edited by P. Cartier et al., Progr. Math. 87, Birkhäuser, Boston, 1990.
  • G. Kings, D. Loeffler, and S. L. Zerbes, “Rankin–Eisenstein classes for modular forms”, preprint, 2015. To appear in Amer. J. Math.
  • G. Kings, D. Loeffler, and S. L. Zerbes, “Rankin–Eisenstein classes and explicit reciprocity laws”, Camb. J. Math. 5:1 (2017), 1–122.
  • S. Kobayashi, “Iwasawa theory for elliptic curves at supersingular primes”, Invent. Math. 152:1 (2003), 1–36.
  • A. Lei, “Iwasawa theory for modular forms at supersingular primes”, Compos. Math. 147:3 (2011), 803–838.
  • A. Lei, “Bounds on the Tamagawa numbers of a crystalline representation over towers of cyclotomic extensions”, Tohoku Math. J. $(2)$ 69:4 (2017), 497–524.
  • A. Lei, D. Loeffler, and S. L. Zerbes, “Wach modules and Iwasawa theory for modular forms”, Asian J. Math. 14:4 (2010), 475–528.
  • A. Lei, D. Loeffler, and S. L. Zerbes, “Coleman maps and the $p$-adic regulator”, Algebra Number Theory 5:8 (2011), 1095–1131.
  • A. Lei, D. Loeffler, and S. L. Zerbes, “Euler systems for Rankin–Selberg convolutions of modular forms”, Ann. of Math. $(2)$ 180:2 (2014), 653–771.
  • A. Lei, D. Loeffler, and S. L. Zerbes, “On the asymptotic growth of Bloch–Kato–Shafarevich–Tate groups of modular forms over cyclotomic extensions”, Canad. J. Math. 69:4 (2017), 826–850.
  • D. Loeffler, “$p$-adic integration on ray class groups and non-ordinary $p$-adic $L$-functions”, pp. 357–378 in Iwasawa theory 2012, edited by T. Bouganis and O. Venjakob, Contrib. Math. Comput. Sci. 7, Springer, 2014.
  • D. Loeffler, “Images of adelic Galois representations for modular forms”, Glasg. Math. J. 59:1 (2017), 11–25.
  • D. Loeffler and S. L. Zerbes, “Iwasawa theory for the symmetric square of a modular form”, J. Reine Angew. Math. (online publication December 2016).
  • D. Loeffler and S. L. Zerbes, “Rankin–Eisenstein classes in Coleman families”, Res. Math. Sci. 3:26 (2016).
  • B. Mazur and K. Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 799, 2004.
  • J. Nekovář, Selmer complexes, Astérisque 310, Société Mathématique de France, Paris, 2006.
  • R. Otsuki, “Construction of a homomorphism concerning Euler systems for an elliptic curve”, Tokyo J. Math. 32:1 (2009), 253–278.
  • B. Perrin-Riou, “Théorie d'Iwasawa des représentations $p$-adiques sur un corps local”, Invent. Math. 115:1 (1994), 81–161.
  • B. Perrin-Riou, “Systèmes d'Euler $p$-adiques et théorie d'Iwasawa”, Ann. Inst. Fourier $($Grenoble$)$ 48:5 (1998), 1231–1307.
  • J. Pottharst, “Analytic families of finite-slope Selmer groups”, Algebra Number Theory 7:7 (2013), 1571–1612.
  • K. Rubin, “A Stark conjecture “over $\mathbf{Z}$” for abelian $L$-functions with multiple zeros”, Ann. Inst. Fourier $($Grenoble$)$ 46:1 (1996), 33–62.
  • E. Urban, “Application to the three variable Rankin–Selberg $p$-adic $L$-functions”, 2017. Appendix II in F. Andreatta and A Iovita, “Triple product $p$-adic $L$-functions associated to finite slope $p$-adic families of modular forms”, preprint, 2017.