Algebra & Number Theory

Fundamental gerbes

Niels Borne and Angelo Vistoli

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For a class of affine algebraic groups C over a field κ, we define the notion of C-fundamental gerbe of a fibered category, generalizing what we did for finite group schemes in a 2015 paper.

We give necessary and sufficient conditions on C implying that a fibered category X over κ satisfying mild hypotheses admits a Nori C-fundamental gerbe. We also give a tannakian interpretation of the gerbe that results by taking as C the class of virtually unipotent group schemes, under a properness condition on X.

Finally, we prove a general duality result, generalizing the duality between group schemes of multiplicative type and Galois modules, that yields a construction of the multiplicative gerbe of multiplicative type which is independent of the previous theory, and requires weaker hypotheses. This gives a conceptual interpretation of the universal torsor of Colliot-Thélène and Sansuc.

Article information

Source
Algebra Number Theory, Volume 13, Number 3 (2019), 531-576.

Dates
Received: 18 September 2017
Revised: 28 August 2018
Accepted: 21 January 2019
First available in Project Euclid: 9 April 2019

Permanent link to this document
https://projecteuclid.org/euclid.ant/1554775222

Digital Object Identifier
doi:10.2140/ant.2019.13.531

Mathematical Reviews number (MathSciNet)
MR3928337

Zentralblatt MATH identifier
07046297

Subjects
Primary: 14A20: Generalizations (algebraic spaces, stacks)
Secondary: 14H30: Coverings, fundamental group [See also 14E20, 14F35]

Keywords
fundamental group scheme Tannaka theory algebraic stacks

Citation

Borne, Niels; Vistoli, Angelo. Fundamental gerbes. Algebra Number Theory 13 (2019), no. 3, 531--576. doi:10.2140/ant.2019.13.531. https://projecteuclid.org/euclid.ant/1554775222


Export citation

References

  • D. Abramovich, M. Olsson, and A. Vistoli, “Tame stacks in positive characteristic”, Ann. Inst. Fourier $($Grenoble$)$ 58:4 (2008), 1057–1091.
  • D. Bergh, “Functorial destackification of tame stacks with abelian stabilisers”, Compos. Math. 153:6 (2017), 1257–1315.
  • B. Bhatt and P. Scholze, “The pro-étale topology for schemes”, pp. 99–201 in Astérisque 369, Soc. Math. France, Paris, 2015.
  • N. Borne and A. Vistoli, “The Nori fundamental gerbe of a fibered category”, J. Algebraic Geom. 24:2 (2015), 311–353.
  • A. Braverman and R. Bezrukavnikov, “Geometric Langlands correspondence for $\mathscr D$-modules in prime characteristic: the ${\rm GL}(n)$ case”, Pure Appl. Math. Q. 3:1 (2007), 153–179.
  • S. Brochard, “Duality for commutative group stacks”, preprint, 2014.
  • J.-L. Colliot-Thélène and J.-J. Sansuc, “Torseurs sous des groupes de type multiplicatif; applications à l'étude des points rationnels de certaines variétés algébriques”, C. R. Acad. Sci. Paris Sér. A-B 282:18 (1976), A1113–A1116.
  • J.-L. Colliot-Thélène and J.-J. Sansuc, “La descente sur les variétés rationnelles, II”, Duke Math. J. 54:2 (1987), 375–492.
  • P. Deligne, “Catégories tannakiennes”, pp. 111–195 in The Grothendieck Festschrift, II, edited by P. Cartier et al., Progr. Math. 87, Birkhäuser, Boston, 1990.
  • J. Giraud, Cohomologie non abélienne, Grundlehren der Math. Wissenschaften 179, Springer, 1971.
  • G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik $($3$)$ 39, Springer, 2000.
  • M. V. Nori, “The fundamental group-scheme”, Proc. Indian Acad. Sci. Math. Sci. 91:2 (1982), 73–122.
  • S. Otabe, “An extension of Nori fundamental group”, Comm. Algebra 45:8 (2017), 3422–3448.
  • N. Saavedra Rivano, Catégories tannakiennes, Lecture Notes in Math. 265, Springer, 1972.
  • P. Gabriel, “Construction de préschémas quotient”, pp. 251–286 in Schémas en groupes, Tome I: Propriétés générales des schémas en groupes, Exposés I–VII (Séminaire de Géométrie Algébrique du Bois Marie 1962–1964), edited by M. Demazure and A. Grothendieck, Lecture Notes in Math. 151, Springer, 1970.
  • M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas, Tome 3: Exposés IX–XIX (Séminaire de Géométrie Algébrique du Bois Marie 1963–1964), Lecture Notes in Math. 305, Springer, 1973.
  • P. Belmans, A. J. de Jong, et al., “The Stacks project”, electronic reference, 2005–, http://stacks.math.columbia.edu.
  • F. Tonini and L. Zhang, “Algebraic and Nori fundamental gerbes”, J. Inst. Math. Jussieu (online publication July 2017).
  • F. Tonini and L. Zhang, “$F$-divided sheaves trivialized by dominant maps are essentially finite”, Trans. Amer. Math. Soc. (online publication August 2018).