Algebra & Number Theory

High moments of the Estermann function

Sandro Bettin

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For aq the Estermann function is defined as D(s,aq):=n1d(n)ns e(naq) if (s)>1 and by meromorphic continuation otherwise. For q prime, we compute the moments of D(s,aq) at the central point s=12, when averaging over 1a<q.

As a consequence we deduce the asymptotic for the iterated moment of Dirichlet L-functions χ1,,χk(modq)|L(12,χ1)|2|L(12,χk)|2|L(12,χ1χk)|2, obtaining a power saving error term.

Also, we compute the moments of certain functions defined in terms of continued fractions. For example, writing f±(aq):=j=0r(±1)jbj where [0;b0,,br] is the continued fraction expansion of aq we prove that for k2 and q primes one has a=1q1f±(aq)k2(ζ(k)2ζ(2k))qk as q.

Article information

Source
Algebra Number Theory, Volume 13, Number 2 (2019), 251-300.

Dates
Received: 14 February 2017
Revised: 8 May 2018
Accepted: 10 August 2018
First available in Project Euclid: 26 March 2019

Permanent link to this document
https://projecteuclid.org/euclid.ant/1553565643

Digital Object Identifier
doi:10.2140/ant.2019.13.251

Mathematical Reviews number (MathSciNet)
MR3927047

Zentralblatt MATH identifier
07042060

Subjects
Primary: 11M06: $\zeta (s)$ and $L(s, \chi)$
Secondary: 11A55: Continued fractions {For approximation results, see 11J70} [See also 11K50, 30B70, 40A15] 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72} 11N75: Applications of automorphic functions and forms to multiplicative problems [See also 11Fxx]

Keywords
Estermann function Dirichlet L-functions divisor function continued fractions mean values moments

Citation

Bettin, Sandro. High moments of the Estermann function. Algebra Number Theory 13 (2019), no. 2, 251--300. doi:10.2140/ant.2019.13.251. https://projecteuclid.org/euclid.ant/1553565643


Export citation

References

  • T. M. Apostol, “On the Lerch zeta function”, Pacific J. Math. 1 (1951), 161–167.
  • T. M. Apostol, Introduction to analytic number theory, Springer, 1976.
  • V. Baladi and B. Vallée, “Euclidean algorithms are Gaussian”, J. Number Theory 110:2 (2005), 331–386.
  • M. Beck, “Dedekind cotangent sums”, Acta Arith. 109:2 (2003), 109–130.
  • S. Bettin, “On the distribution of a cotangent sum”, Int. Math. Res. Not. 2015:21 (2015), 11419–11432.
  • S. Bettin, “On the reciprocity law for the twisted second moment of Dirichlet $L$-functions”, Trans. Amer. Math. Soc. 368:10 (2016), 6887–6914.
  • S. Bettin, “Linear correlations of the divisor function”, preprint, 2017. To appear in Acta Arith.
  • S. Bettin and B. Conrey, “Period functions and cotangent sums”, Algebra Number Theory 7:1 (2013), 215–242.
  • S. Bettin and J. B. Conrey, “A reciprocity formula for a cotangent sum”, Int. Math. Res. Not. 2013:24 (2013), 5709–5726.
  • V. Blomer and D. Milićević, “The second moment of twisted modular $L$-functions”, Geom. Funct. Anal. 25:2 (2015), 453–516.
  • V. Blomer, G. Harcos, and P. Michel, “A Burgess-like subconvex bound for twisted $L$-functions”, Forum Math. 19:1 (2007), 61–105.
  • V. Blomer, É. Fouvry, E. Kowalski, P. Michel, and D. Milićević, “On moments of twisted $L$-functions”, Amer. J. Math. 139:3 (2017), 707–768.
  • V. A. Bykovskiĭ, “An estimate for the dispersion of lengths of finite continued fractions”, Fundam. Prikl. Mat. 11:6 (2005), 15–26. In Russian; translation in J. Math. Sci 146:2 (2007), 5634–5643.
  • G. Chinta, “Mean values of biquadratic zeta functions”, Invent. Math. 160:1 (2005), 145–163.
  • J. B. Conrey, “More than two fifths of the zeros of the Riemann zeta function are on the critical line”, J. Reine Angew. Math. 399 (1989), 1–26.
  • J. B. Conrey and A. Ghosh, “Remarks on the generalized Lindelöf hypothesis”, Funct. Approx. Comment. Math. 36 (2006), 71–78.
  • J. B. Conrey and H. Iwaniec, “The cubic moment of central values of automorphic $L$-functions”, Ann. of Math. $(2)$ 151:3 (2000), 1175–1216.
  • J. B. Conrey, A. Ghosh, and S. M. Gonek, “Large gaps between zeros of the zeta-function”, Mathematika 33:2 (1986), 212–238.
  • J.-M. Deshouillers and H. Iwaniec, “Kloosterman sums and Fourier coefficients of cusp forms”, Invent. Math. 70:2 (1982), 219–288.
  • T. Estermann, “On the representations of a number as the sum of two products”, Proc. London Math. Soc. $(2)$ 31:2 (1930), 123–133.
  • T. Estermann, “On the representations of a number as the sum of three or more products”, Proc. London Math. Soc. $(2)$ 34:3 (1932), 190–195.
  • G. H. Hardy and J. E. Littlewood, “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta Math. 41:1 (1916), 119–196.
  • G. Harman, N. Watt, and K. Wong, “A new mean-value result for Dirichlet $L$-functions and polynomials”, Q. J. Math. 55:3 (2004), 307–324.
  • D. R. Heath-Brown, “The fourth power moment of the Riemann zeta function”, Proc. London Math. Soc. $(3)$ 38:3 (1979), 385–422.
  • D. R. Heath-Brown, “The fourth power mean of Dirichlet's $L$-functions”, Analysis 1:1 (1981), 25–32.
  • H. Heilbronn, “On the average length of a class of finite continued fractions”, pp. 87–96 in Number theory and analysis, edited by P. Turán, Plenum, New York, 1969.
  • D. Hensley, “The number of steps in the Euclidean algorithm”, J. Number Theory 49:2 (1994), 142–182.
  • M. Ishibashi, “The value of the Estermann zeta functions at $s=0$”, Acta Arith. 73:4 (1995), 357–361.
  • H. Iwaniec and P. Sarnak, “The non-vanishing of central values of automorphic $L$-functions and Landau–Siegel zeros”, Israel J. Math. 120:A (2000), 155–177.
  • H. H. Kim, “Functoriality for the exterior square of ${\rm GL}_4$ and the symmetric fourth of ${\rm GL}_2$”, J. Amer. Math. Soc. 16:1 (2003), 139–183.
  • H. Maier and M. T. Rassias, “Generalizations of a cotangent sum associated to the Estermann zeta function”, Commun. Contemp. Math. 18:1 (2016), art. id. 1550078.
  • Y. Motohashi, “An asymptotic series for an additive divisor problem”, Math. Z. 170:1 (1980), 43–63.
  • Y. Motohashi, “The binary additive divisor problem”, Ann. Sci. École Norm. Sup. $(4)$ 27:5 (1994), 529–572.
  • Y. Motohashi, Spectral theory of the Riemann zeta-function, Cambridge Tracts in Math. 127, Cambridge Univ. Press, 1997.
  • R. E. A. C. Paley, “On the $k$-analogues of some theorems in the theory of the Riemann sigma-function”, Proc. London Math. Soc. $(2)$ 32:1 (1931), 273–311.
  • J. W. Porter, “On a theorem of Heilbronn”, Mathematika 22:1 (1975), 20–28.
  • K. Soundararajan, “Nonvanishing of quadratic Dirichlet $L$-functions at $s=\smash{\frac12}$”, Ann. of Math. $(2)$ 152:2 (2000), 447–488.
  • K. Soundararajan, “The fourth moment of Dirichlet $L$-functions”, pp. 239–246 in Analytic number theory (Göttingen, 2005), edited by W. Duke and Y. Tschinkel, Clay Math. Proc. 7, Amer. Math. Soc., Providence, RI, 2007.
  • E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., Oxford Univ. Press, 1986.
  • T. Tonkov, “The mean length of finite continued fractions”, Math. Balkanica 4 (1974), 617–629. In Russian.
  • N. Watt, “Fourier coefficients of modular forms and eigenvalues of a Hecke operator”, Funct. Approx. Comment. Math. 34 (2005), 27–146.
  • A. C. Yao and D. E. Knuth, “Analysis of the subtractive algorithm for greatest common divisors”, Proc. Nat. Acad. Sci. U.S.A. 72:12 (1975), 4720–4722.
  • M. P. Young, “The fourth moment of Dirichlet $L$-functions”, Ann. of Math. $(2)$ 173:1 (2011), 1–50.
  • M. P. Young, “The reciprocity law for the twisted second moment of Dirichlet $L$-functions”, Forum Math. 23:6 (2011), 1323–1337.
  • D. Zagier, “Quantum modular forms”, pp. 659–675 in Quanta of maths (Paris, 2007), edited by E. Blanchard et al., Clay Math. Proc. 11, Amer. Math. Soc., Providence, RI, 2010.