Algebra & Number Theory

Heights of hypersurfaces in toric varieties

Roberto Gualdi

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For a cycle of codimension 1 in a toric variety, its degree with respect to a nef toric divisor can be understood in terms of the mixed volume of the polytopes associated to the divisor and to the cycle. We prove here that an analogous combinatorial formula holds in the arithmetic setting: the global height of a 1-codimensional cycle with respect to a toric divisor equipped with a semipositive toric metric can be expressed in terms of mixed integrals of the v-adic roof functions associated to the metric and the Legendre–Fenchel dual of the v-adic Ronkin function of the Laurent polynomial of the cycle.

Article information

Source
Algebra Number Theory, Volume 12, Number 10 (2018), 2403-2443.

Dates
Received: 14 November 2017
Revised: 16 July 2018
Accepted: 23 September 2018
First available in Project Euclid: 14 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.ant/1550113227

Digital Object Identifier
doi:10.2140/ant.2018.12.2403

Mathematical Reviews number (MathSciNet)
MR3911135

Zentralblatt MATH identifier
07026822

Subjects
Primary: 14M25: Toric varieties, Newton polyhedra [See also 52B20]
Secondary: 11G50: Heights [See also 14G40, 37P30] 14G40: Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30] 52A39: Mixed volumes and related topics

Keywords
toric variety height of a variety Ronkin function Legendre–Fenchel duality mixed integral

Citation

Gualdi, Roberto. Heights of hypersurfaces in toric varieties. Algebra Number Theory 12 (2018), no. 10, 2403--2443. doi:10.2140/ant.2018.12.2403. https://projecteuclid.org/euclid.ant/1550113227


Export citation

References

  • H. Attouch and R. J.-B. Wets, “Epigraphical analysis”, Ann. Inst. H. Poincaré Anal. Non Linéaire 6:suppl. (1989), 73–100.
  • V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs 33, American Mathematical Society, Providence, RI, 1990.
  • D. W. Boyd, “Mahler's measure and special values of $L$-functions”, Experiment. Math. 7:1 (1998), 37–82.
  • J. I. Burgos Gil, P. Philippon, and M. Sombra, Arithmetic geometry of toric varieties: metrics, measures and heights, Astérisque 360, Société Mathématique de France, Paris, 2014.
  • J. I. Burgos Gil, P. Philippon, J. Rivera-Letelier, and M. Sombra, “The distribution of Galois orbits of points of small height in toric varieties”, preprint, 2015.
  • J. Cassaigne and V. Maillot, “Hauteur des hypersurfaces et fonctions zêta d'Igusa”, J. Number Theory 83:2 (2000), 226–255.
  • A. Chambert-Loir, “Mesures et équidistribution sur les espaces de Berkovich”, J. Reine Angew. Math. 595 (2006), 215–235.
  • A. Chambert-Loir, “Heights and measures on analytic spaces: a survey of recent results, and some remarks”, pp. 1–50 in Motivic integration and its interactions with model theory and non-Archimedean geometry, II, edited by R. Cluckers et al., London Math. Soc. Lecture Note Ser. 384, Cambridge Univ. Press, 2011.
  • A. Chambert-Loir and A. Ducros, “Formes différentielles réelles et courants sur les espaces de Berkovich”, preprint, 2012.
  • A. Chambert-Loir and A. Thuillier, “Mesures de Mahler et équidistribution logarithmique”, Ann. Inst. Fourier $($Grenoble$)$ 59:3 (2009), 977–1014.
  • D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics 124, American Mathematical Society, Providence, RI, 2011.
  • C. Deninger, “Deligne periods of mixed motives, $K$-theory and the entropy of certain $\mathbb{Z}^n$-actions”, J. Amer. Math. Soc. 10:2 (1997), 259–281.
  • M. Einsiedler, M. Kapranov, and D. Lind, “Non-Archimedean amoebas and tropical varieties”, J. Reine Angew. Math. 601 (2006), 139–157.
  • G. Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics 168, Springer, 1996.
  • G. Faltings, “Diophantine approximation on abelian varieties”, Ann. of Math. $(2)$ 133:3 (1991), 549–576.
  • W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton Univ. Press, 1993.
  • W. Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete $(3)$ 2, Springer, 1998.
  • I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, MA, 1994.
  • W. Gubler, “Heights of subvarieties over $M$-fields”, pp. 190–227 in Arithmetic geometry (Cortona, 1994), edited by F. Catanese, Sympos. Math. 37, Cambridge Univ. Press, 1997.
  • W. Gubler, “Local heights of subvarieties over non-Archimedean fields”, J. Reine Angew. Math. 498 (1998), 61–113.
  • W. Gubler, “Local and canonical heights of subvarieties”, Ann. Sc. Norm. Super. Pisa Cl. Sci. $(5)$ 2:4 (2003), 711–760.
  • W. Gubler, “Tropical varieties for non-Archimedean analytic spaces”, Invent. Math. 169:2 (2007), 321–376.
  • W. Gubler and J. Hertel, “Local heights of toric varieties over non-archimedean fields”, pp. 5–77 in Actes de la conférence “Non-Archimedean Analytic Geometry: Theory and Practice” (Papeete, 2015), Publ. Math. Besançon Algèbre Théorie Nr. 2017/1, Presses Univ. Franche-Comté, Besançon, 2017.
  • W. Gubler and K. Künnemann, “A tropical approach to nonarchimedean Arakelov geometry”, Algebra Number Theory 11:1 (2017), 77–180.
  • G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings, I, Lecture Notes in Mathematics 339, Springer, 1973.
  • M. N. Lalín, “Mahler measures and computations with regulators”, J. Number Theory 128:5 (2008), 1231–1271.
  • C. G. Lekkerkerker, Geometry of numbers, Bibliotheca Mathematica 8, Wolters-Noordhoff, Groningen, 1969.
  • V. Maillot, Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. Fr. (N.S.) 80, Société Mathématique de France, Paris, 2000.
  • C. Martínez and M. Sombra, “An arithmetic Bernštein–Kušnirenko inequality”, Math. Z. (online publication September 2018).
  • T. Oda, “Convex bodies and algebraic geometry–-toric varieties and applications, I”, pp. 89–94 in Algebraic geometry seminar (Singapore, 1987), edited by M. Nagata and T. A. Peng, World Scientific, Singapore, 1988.
  • M. Passare and H. Rullgård, “Amoebas, Monge–Ampère measures, and triangulations of the Newton polytope”, Duke Math. J. 121:3 (2004), 481–507.
  • P. Philippon, “Sur des hauteurs alternatives, III”, J. Math. Pures Appl. $(9)$ 74:4 (1995), 345–365.
  • P. Philippon and M. Sombra, “Hauteur normalisée des variétés toriques projectives”, J. Inst. Math. Jussieu 7:2 (2008), 327–373.
  • P. Philippon and M. Sombra, “A refinement of the Bernštein–Kušnirenko estimate”, Adv. Math. 218:5 (2008), 1370–1418.
  • J. Rauch and B. A. Taylor, “The Dirichlet problem for the multidimensional Monge–Ampère equation”, Rocky Mountain J. Math. 7:2 (1977), 345–364.
  • R. T. Rockafellar, Convex analysis, Princeton Mathematical Series 28, Princeton Univ. Press, 1970.
  • C. J. Smyth, “On measures of polynomials in several variables”, Bull. Austral. Math. Soc. 23:1 (1981), 49–63.
  • S. Zhang, “Small points and adelic metrics”, J. Algebraic Geom. 4:2 (1995), 281–300.