Algebra & Number Theory

Algebraic dynamics of the lifts of Frobenius

Junyi Xie

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study the algebraic dynamics of endomorphisms of projective spaces with coefficients in a p-adic field whose reduction in positive characteristic is the Frobenius. In particular, we prove a version of the dynamical Manin–Mumford conjecture and the dynamical Mordell–Lang conjecture for the coherent backward orbits of such endomorphisms. We also give a new proof of a dynamical version of the Tate–Voloch conjecture in this case. Our method is based on the theory of perfectoid spaces introduced by P. Scholze. In the appendix, we prove that under some technical condition on the field of definition, a dynamical system for a polarized lift of Frobenius on a projective variety can be embedded into a dynamical system for some endomorphism of a projective space.

Article information

Source
Algebra Number Theory, Volume 12, Number 7 (2018), 1715-1748.

Dates
Received: 2 October 2017
Revised: 15 June 2018
Accepted: 17 July 2018
First available in Project Euclid: 9 November 2018

Permanent link to this document
https://projecteuclid.org/euclid.ant/1541732439

Digital Object Identifier
doi:10.2140/ant.2018.12.1715

Mathematical Reviews number (MathSciNet)
MR3871508

Zentralblatt MATH identifier
06976300

Subjects
Primary: 37P55: Arithmetic dynamics on general algebraic varieties
Secondary: 37P20: Non-Archimedean local ground fields 37P35: Arithmetic properties of periodic points

Keywords
algebraic dynamics perfectoid space

Citation

Xie, Junyi. Algebraic dynamics of the lifts of Frobenius. Algebra Number Theory 12 (2018), no. 7, 1715--1748. doi:10.2140/ant.2018.12.1715. https://projecteuclid.org/euclid.ant/1541732439


Export citation

References

  • M. H. Baker and L.-C. Hsia, “Canonical heights, transfinite diameters, and polynomial dynamics”, J. Reine Angew. Math. 585 (2005), 61–92.
  • J. P. Bell, D. Ghioca, and T. J. Tucker, “The dynamical Mordell–Lang problem for étale maps”, Amer. J. Math. 132:6 (2010), 1655–1675.
  • J. P. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell–Lang conjecture, Mathematical Surveys and Monographs 210, American Mathematical Society, Providence, RI, 2016.
  • S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 261, Springer, 1984.
  • A. Buium, “An approximation property for Teichmüller points”, Math. Res. Lett. 3:4 (1996), 453–457.
  • A. Buium, “Geometry of $p$-jets”, Duke Math. J. 82:2 (1996), 349–367.
  • R. Dujardin and C. Favre, “The dynamical Manin–Mumford problem for plane polynomial automorphisms”, J. Eur. Math. Soc. $($JEMS$)$ 19:11 (2017), 3421–3465.
  • N. Fakhruddin, “Questions on self maps of algebraic varieties”, J. Ramanujan Math. Soc. 18:2 (2003), 109–122.
  • N. Fakhruddin, “The algebraic dynamics of generic endomorphisms of $\mathbb{P}^n$”, Algebra Number Theory 8:3 (2014), 587–608.
  • G. Faltings, “The general case of S. Lang's conjecture”, pp. 175–182 in Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), edited by V. Cristante and W. Messing, Perspect. Math. 15, Academic Press, San Diego, CA, 1994.
  • J.-M. Fontaine and J.-P. Wintenberger, “Extensions algébrique et corps des normes des extensions APF des corps locaux”, C. R. Acad. Sci. Paris Sér. A-B 288:8 (1979), A441–A444.
  • O. Gabber and L. Ramero, Almost ring theory, Lecture Notes in Mathematics 1800, Springer, 2003.
  • D. Ghioca and T. J. Tucker, “Periodic points, linearizing maps, and the dynamical Mordell–Lang problem”, J. Number Theory 129:6 (2009), 1392–1403.
  • D. Ghioca and T. J. Tucker, “Proof of a dynamical Bogomolov conjecture for lines under polynomial actions”, Proc. Amer. Math. Soc. 138:3 (2010), 937–942.
  • D. Ghioca, T. J. Tucker, and S. Zhang, “Towards a dynamical Manin–Mumford conjecture”, Int. Math. Res. Not. 2011:22 (2011), 5109–5122.
  • D. Ghioca, K. D. Nguyen, and H. Ye, “The Dynamical Manin–Mumford Conjecture and the Dynamical Bogomolov Conjecture for split rational maps”, 2015.
  • D. Ghioca, K. D. Nguyen, and H. Ye, “The dynamical Manin–Mumford conjecture and the dynamical Bogomolov conjecture for endomorphisms of $\smash{(\mathbb P^1)^n}$”, Compos. Math. 154:7 (2018), 1441–1472.
  • E. Hrushovski, “The Manin–Mumford conjecture and the model theory of difference fields”, Ann. Pure Appl. Logic 112:1 (2001), 43–115.
  • R. Huber, “Continuous valuations”, Math. Z. 212:3 (1993), 455–477.
  • R. Huber, “A generalization of formal schemes and rigid analytic varieties”, Math. Z. 217:4 (1994), 513–551.
  • R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Friedr. Vieweg & Sohn, Braunschweig, 1996.
  • A. Medvedev and T. Scanlon, “Invariant varieties for polynomial dynamical systems”, Ann. of Math. $(2)$ 179:1 (2014), 81–177.
  • F. Pazuki, “Zhang's conjecture and squares of abelian surfaces”, C. R. Math. Acad. Sci. Paris 348:9-10 (2010), 483–486.
  • F. Pazuki, “Polarized morphisms between abelian varieties”, Int. J. Number Theory 9:2 (2013), 405–411.
  • R. Pink and D. Roessler, “On Hrushovski's proof of the Manin–Mumford conjecture”, pp. 539–546 in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), edited by T. Li, Higher Ed. Press, Beijing, 2002.
  • M. Raynaud, “Courbes sur une variété abélienne et points de torsion”, Invent. Math. 71:1 (1983), 207–233.
  • M. Raynaud, “Sous-variétés d'une variété abélienne et points de torsion”, pp. 327–352 in Arithmetic and geometry, Vol. I, edited by M. Artin and J. Tate, Progr. Math. 35, Birkhäuser, Boston, 1983.
  • T. Scanlon, “The conjecture of Tate and Voloch on $p$-adic proximity to torsion”, Internat. Math. Res. Notices 17 (1999), 909–914.
  • P. Scholze, “Perfectoid spaces”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313.
  • P. Scholze, “Perfectoid spaces and their applications”, pp. 461–486 in Proceedings of the International Congress of Mathematicians–-Seoul 2014. Vol. II, edited by S. Y. Jang et al., Kyung Moon Sa, Seoul, 2014.
  • J. Tate and J. F. Voloch, “Linear forms in $p$-adic roots of unity”, Internat. Math. Res. Notices 12 (1996), 589–601.
  • E. Ullmo, “Positivité et discrétion des points algébriques des courbes”, Ann. of Math. $(2)$ 147:1 (1998), 167–179.
  • P. Vojta, “Integral points on subvarieties of semiabelian varieties. I”, Invent. Math. 126:1 (1996), 133–181.
  • J. Xie, “The dynamical Mordell–Lang conjecture for polynomial endomorphisms of the affine plane”, pp. vi+110 in Journées de Géométrie Algébrique d'Orsay, Astérisque 394, Société Mathématique de France, Paris, 2017.
  • X. Yuan and S.-W. Zhang, “The arithmetic Hodge index theorem for adelic line bundles”, Math. Ann. 367:3-4 (2017), 1123–1171.
  • S. Zhang, “Small points and adelic metrics”, J. Algebraic Geom. 4:2 (1995), 281–300.
  • S.-W. Zhang, “Equidistribution of small points on abelian varieties”, Ann. of Math. $(2)$ 147:1 (1998), 159–165.