Algebra & Number Theory

Akizuki–Witt maps and Kaletha's global rigid inner forms

Olivier Taïbi

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We give an explicit construction of global Galois gerbes constructed more abstractly by Kaletha to define global rigid inner forms. This notion is crucial to formulate Arthur’s multiplicity formula for inner forms of quasisplit reductive groups. As a corollary, we show that any global rigid inner form is almost everywhere unramified, and we give an algorithm to compute the resulting local rigid inner forms at all places in a given finite set. This makes global rigid inner forms as explicit as global pure inner forms, up to computations in local and global class field theory.

Article information

Source
Algebra Number Theory, Volume 12, Number 4 (2018), 833-884.

Dates
Received: 17 February 2017
Revised: 28 November 2017
Accepted: 29 December 2017
First available in Project Euclid: 28 July 2018

Permanent link to this document
https://projecteuclid.org/euclid.ant/1532743324

Digital Object Identifier
doi:10.2140/ant.2018.12.833

Mathematical Reviews number (MathSciNet)
MR3830205

Zentralblatt MATH identifier
06911688

Subjects
Primary: 11E72: Galois cohomology of linear algebraic groups [See also 20G10]
Secondary: 11F55: Other groups and their modular and automorphic forms (several variables) 11F70: Representation-theoretic methods; automorphic representations over local and global fields 11F72: Spectral theory; Selberg trace formula

Keywords
class field theory Akizuki–Witt rigid inner forms global Langlands correspondence Arthur multiplicity formula

Citation

Taïbi, Olivier. Akizuki–Witt maps and Kaletha's global rigid inner forms. Algebra Number Theory 12 (2018), no. 4, 833--884. doi:10.2140/ant.2018.12.833. https://projecteuclid.org/euclid.ant/1532743324


Export citation

References

  • J. Arthur, “Unipotent automorphic representations: conjectures”, pp. 13–71 in Orbites unipotentes et représentations, II: Groupes $p$-adiques et réels, Astérisque 171-172, Société Mathématique de France, Paris, 1989.
  • J. Arthur, The endoscopic classification of representations: orthogonal and symplectic groups, Amer. Math. Soc. Colloquium Publ. 61, Amer. Math. Soc., Providence, RI, 2013.
  • E. Artin and J. Tate, Class field theory, W. A. Benjamin, New York, 1968. Corrections available at https://tinyurl.com/cfterrata.
  • A. Borel, “Automorphic $L$-functions”, pp. 27–61 in Automorphic forms, representations and $L$-functions, II (Corvallis, OR, 1977), edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, RI, 1979.
  • C. Breuil, B. Conrad, F. Diamond, and R. Taylor, “On the modularity of elliptic curves over $\mathbb{Q}$: wild $3$-adic exercises”, J. Amer. Math. Soc. 14:4 (2001), 843–939.
  • W. Casselman and J. Shalika, “The unramified principal series of $p$-adic groups, II: The Whittaker function”, Compositio Math. 41:2 (1980), 207–231.
  • G. Chenevier and D. Renard, Level one algebraic cusp forms of classical groups of small rank, Mem. Amer. Math. Soc. 1121, Amer. Math. Soc., Providence, RI, 2015.
  • N. D. Elkies, “The existence of infinitely many supersingular primes for every elliptic curve over ${\mathbb{Q}}$”, Invent. Math. 89:3 (1987), 561–567.
  • B. H. Gross, “Algebraic modular forms”, Israel J. Math. 113 (1999), 61–93.
  • H. Jacquet and R. P. Langlands, Automorphic forms on ${\rm GL}(2)$, Lecture Notes in Math. 114, Springer, 1970.
  • T. Kaletha, “Genericity and contragredience in the local Langlands correspondence”, Algebra Number Theory 7:10 (2013), 2447–2474.
  • T. Kaletha, “Rigid inner forms of real and $p$-adic groups”, Ann. of Math. $(2)$ 184:2 (2016), 559–632.
  • T. Kaletha, “Global rigid inner forms and multiplicities of discrete automorphic representations”, Invent. Math. (2018).
  • R. E. Kottwitz, “Stable trace formula: cuspidal tempered terms”, Duke Math. J. 51:3 (1984), 611–650.
  • R. E. Kottwitz and D. Shelstad, Foundations of twisted endoscopy, Astérisque 255, Société Mathématique de France, Paris, 1999.
  • J.-P. Labesse and R. P. Langlands, “$L$-indistinguishability for ${\rm SL}(2)$”, Canad. J. Math. 31:4 (1979), 726–785.
  • R. P. Langlands, Les débuts d'une formule des traces stable, Publ. Math. Univ. Paris VII 13, Univ. Paris VII, 1983.
  • R. P. Langlands and M. Rapoport, “Shimuravarietäten und Gerben”, J. Reine Angew. Math. 378 (1987), 113–220.
  • R. P. Langlands and D. Shelstad, “On the definition of transfer factors”, Math. Ann. 278:1-4 (1987), 219–271.
  • C. P. Mok, Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 1108, Amer. Math. Soc., Providence, RI, 2015.
  • J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der Math. Wissenschaften 323, Springer, 2008.
  • D. Ramakrishnan, “Modularity of the Rankin–Selberg $L$-series, and multiplicity one for ${\rm SL}(2)$”, Ann. of Math. $(2)$ 152:1 (2000), 45–111. Correction in 152:3 (2000), 903.
  • J.-P. Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Math. 5, Springer, 1994.
  • M. Demazure and A. Grothendieck, Schémas en groupes, II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Exposés VIII–XVIII (Séminaire de Géométrie Algébrique du Bois Marie 1962–1964), Lecture Notes in Math. 152, Springer, 1970.
  • M. Demazure and A. Grothendieck, Schémas en groupes, III: Structure des schémas en groupes réductifs, Exposés XIX–XXVI (Séminaire de Géométrie Algébrique du Bois Marie 1962–1964), Lecture Notes in Math. 153, Springer, 1970.
  • R. Steinberg, “Regular elements of semisimple algebraic groups”, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80.
  • O. Taïbi, “Arthur's multiplicity formula for certain inner forms of special orthogonal and symplectic groups”, 2015. To appear in J. Eur. Math. Soc.
  • O. Taïbi, “Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula”, Ann. Sci. Éc. Norm. Supér. (4) 50:2 (2017), 269–344.
  • J. Tate, “The cohomology groups of tori in finite Galois extensions of number fields”, Nagoya Math. J. 27 (1966), 709–719.
  • D. A. Vogan, Jr., “The local Langlands conjecture”, pp. 305–379 in Representation theory of groups and algebras, edited by J. Adams et al., Contemp. Math. 145, Amer. Math. Soc., Providence, RI, 1993.
  • C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math. 38, Cambridge Univ. Press, 1994.