Algebra & Number Theory

The essential dimension of the normalizer of a maximal torus in the projective linear group

Aurel Meyer and Zinovy Reichstein

Full-text: Open access

Abstract

Let p be a prime, k a field of characteristic p and N the normalizer of the maximal torus in the projective linear group PGLn. We compute the exact value of the essential dimension edk(N;p) of N at p for every n1.

Article information

Source
Algebra Number Theory, Volume 3, Number 4 (2009), 467-487.

Dates
Received: 9 September 2008
Revised: 5 December 2008
Accepted: 19 December 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513797425

Digital Object Identifier
doi:10.2140/ant.2009.3.467

Mathematical Reviews number (MathSciNet)
MR2525560

Zentralblatt MATH identifier
1222.11056

Subjects
Primary: 11E72: Galois cohomology of linear algebraic groups [See also 20G10]
Secondary: 20D15: Nilpotent groups, $p$-groups 16K20: Finite-dimensional {For crossed products, see 16S35}

Keywords
essential dimension central simple algebra character lattice finite p-group Galois cohomology

Citation

Meyer, Aurel; Reichstein, Zinovy. The essential dimension of the normalizer of a maximal torus in the projective linear group. Algebra Number Theory 3 (2009), no. 4, 467--487. doi:10.2140/ant.2009.3.467. https://projecteuclid.org/euclid.ant/1513797425


Export citation

References

  • M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, MA, 1969.
  • G. Berhuy and G. Favi, “Essential dimension: a functorial point of view (after A. Merkurjev)”, Doc. Math. 8 (2003), 279–330.
  • N. Bourbaki, Algebra II: Chapters 4–7, Springer, Berlin, 1990.
  • P. Brosnan, Z. Reichstein, and A. Vistoli, “Essential dimension, spinor groups and quadratic forms”, \makeatletter\def\@url preprint, 2008, http://www.math.ubc.ca/~reichst/pfister-numbers.pdf. To appear in Annals of Math.
  • J. Buhler and Z. Reichstein, “On the essential dimension of a finite group”, Compositio Math. 106:2 (1997), 159–179.
  • J. Buhler and Z. Reichstein, “On Tschirnhaus transformations”, pp. 127–142 in Topics in number theory (University Park, PA, 1997), edited by D. Scott, Math. Appl. 467, Kluwer Acad. Publ., Dordrecht, 1999.
  • V. Chernousov and J.-P. Serre, “Lower bounds for essential dimensions via orthogonal representations”, J. Algebra 305:2 (2006), 1055–1070.
  • M. Demazure and P. Gabriel, Groupes algébriques, I: Géométrie algébrique, généralités, groupes commutatifs, Masson, 1970.
  • G. Favi and M. Florence, “Tori and essential dimension”, J. Algebra 319:9 (2008), 3885–3900.
  • A. Grothendieck, “Torsion homologique et sections rationnelles”, in Séminaire C. Chevalley, 2ème année: Anneaux de Chow et applications (Exposé no. 5), Secrétariat de mathématique, ENS, Paris, 1958.
  • J. C. Jantzen, Representations of algebraic groups, 2nd. ed., Mathematical Surveys and Monographs 107, American Mathematical Society, Providence, RI, 2003.
  • N. A. Karpenko and A. S. Merkurjev, “Essential dimension of finite $p$-groups”, Invent. Math. 172:3 (2008), 491–508.
  • N. Lemire, “Essential dimension of algebraic groups and integral representations of Weyl groups”, Transform. Groups 9:4 (2004), 337–379.
  • M. Lorenz and Z. Reichstein, “Lattices and parameter reduction in division algebras”, preprint 2000-001, MSRI, 2000, http://www.msri.org/publications/preprints/online/2000-001.html.
  • M. Lorenz, Z. Reichstein, L. H. Rowen, and D. J. Saltman, “Fields of definition for division algebras”, J. London Math. Soc. $(2)$ 68:3 (2003), 651–670.
  • R. Lötscher, “Application of multihomogeneous rational covariants to the determination of essential dimension of finite groups”, preprint, 2008.
  • A. S. Merkurjev, “Essential dimension”, preprint, 2007, http://www.math.ucla.edu/~merkurev/papers/review.dvi. To appear in Algebraic and arithmetic theory of quadratic forms (Llanquihue, Chile, 2007), Contemporary Mathematics, Amer. Math. Soc.
  • A. S. Merkurjev, “Essential $p$-dimension of $\mathrm{PGL}(p^2)$”, preprint, 2008, http://www.math.ucla.edu/~merkurev/papers/pgl.dvi.
  • J. S. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton University Press, Princeton, NJ, 1980.
  • C. Procesi, “Non-commutative affine rings”, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I $(8)$ 8 (1967), 239–255.
  • Z. Reichstein, “On a theorem of Hermite and Joubert”, Canad. J. Math. 51:1 (1999), 69–95.
  • Z. Reichstein, “On the notion of essential dimension for algebraic groups”, Transform. Groups 5:3 (2000), 265–304.
  • Z. Reichstein and B. Youssin, “Essential dimensions of algebraic groups and a resolution theorem for $G$-varieties”, Canad. J. Math. 52:5 (2000), 1018–1056. http://www.ams.org/mathscinet-getitem?mr=2001:14088MR 2001:14088
  • L. H. Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics 84, Academic Press, New York, 1980.
  • L. H. Rowen and D. J. Saltman, “Prime-to-$p$ extensions of division algebras”, Israel J. Math. 78:2-3 (1992), 197–207.
  • J.-P. Serre, “Modules projectifs et espaces fibrés à fibre vectorielle”, in Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23, Secrétariat mathématique, Paris, 1958.
  • J.-P. Serre, “Cohomologie galoisienne des groupes algébriques linéaires”, pp. 53–68 in Colloq. Théorie des Groupes Algébriques (Brussels, 1962), Librairie Universitaire, Louvain, 1962.
  • J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Springer, New York, 1977. 42.
  • J.-P. Serre, Galois cohomology, Springer, Berlin, 1997. http://www.emis.de/cgi-bin/MATH-item?0902.12004ZBL 0902.12004