Algebra & Number Theory

Ideals generated by submaximal minors

Jan Kleppe and Rosa Miró-Roig

Full-text: Open access

Abstract

The goal of this paper is to study irreducible families Wt,tt1(b¯;a¯) of codimension 4, arithmetically Gorenstein schemes Xn defined by the submaximal minors of a t×t homogeneous matrix A whose entries are homogeneous forms of degree ajbi. Under some numerical assumption on aj and bi, we prove that the closure of Wt,tt1(b¯;a¯) is an irreducible component of Hilbp(x)(n), show that Hilbp(x)(n) is generically smooth along Wt,tt1(b¯;a¯), and compute the dimension of Wt,tt1(b¯;a¯) in terms of aj and bi. To achieve these results we first prove that X is determined by a regular section of YY2(s) where s= deg(detA) and Yn is a codimension-2, arithmetically Cohen–Macaulay scheme defined by the maximal minors of the matrix obtained deleting a suitable row of A.

Article information

Source
Algebra Number Theory, Volume 3, Number 4 (2009), 367-392.

Dates
Received: 3 October 2007
Revised: 12 December 2008
Accepted: 12 December 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513797417

Digital Object Identifier
doi:10.2140/ant.2009.3.367

Mathematical Reviews number (MathSciNet)
MR2525555

Zentralblatt MATH identifier
1186.14052

Subjects
Primary: 14M12: Determinantal varieties [See also 13C40] 14C05: Parametrization (Chow and Hilbert schemes) 14H10: Families, moduli (algebraic) 14J10: Families, moduli, classification: algebraic theory
Secondary: 14N05: Projective techniques [See also 51N35]

Keywords
Hilbert scheme arithmetically Gorenstein determinantal schemes

Citation

Kleppe, Jan; Miró-Roig, Rosa. Ideals generated by submaximal minors. Algebra Number Theory 3 (2009), no. 4, 367--392. doi:10.2140/ant.2009.3.367. https://projecteuclid.org/euclid.ant/1513797417


Export citation

References

  • M. André, Homologie des algèbres commutatives, Grundlehren der Math. Wissenschaften 206, Springer, Berlin, 1974.
  • L. Avramov and J. Herzog, “The Koszul algebra of a codimension $2$ embedding”, Math. Z. 175:3 (1980), 249–260.
  • W. Bruns and U. Vetter, Determinantal rings, Lecture Notes in Mathematics 1327, Springer, Berlin, 1988.
  • M. Casanellas, E. Drozd, and R. Hartshorne, “Gorenstein liaison and ACM sheaves”, J. Reine Angew. Math. 584 (2005), 149–171.
  • J. A. Eagon and D. G. Northcott, “Ideals defined by matrices and a certain complex associated with them.”, Proc. Roy. Soc. Ser. A 269 (1962), 188–204.
  • G. Ellingsrud, “Sur le schéma de Hilbert des variétés de codimension $2$ dans ${\bf P}\sp{e}$ à cône de Cohen-Macaulay”, Ann. Sci. École Norm. Sup. $(4)$ 8:4 (1975), 423–431.
  • G. Ellingsrud and C. Peskine, “Anneau de Gorenstein associé à un fibré inversible sur une surface de l'espace et lieu de Noether-Lefschetz”, pp. 29–42 in Proceedings of the Indo-French Conference on Geometry (Bombay, 1989), Hindustan Book Agency, Delhi, 1993.
  • E. Gorla, “A generalized Gaeta's theorem”, Compos. Math. 144:3 (2008), 689–704.
  • D. Grayson and M. Stillman, “Macaulay 2: a software system for algebraic geometry and commutative algebra”, http://www.math.uiuc.edu/Macaulay2.
  • A. Grothendieck, “Techniques de construction et théorèmes d'existence en géométrie algébrique, IV: Les schémas de Hilbert”, in Séminaire Bourbaki 1960/1961 \normalfont(exposé 221), W. A. Benjamin, New York, 1966. Reprinted as pp. 249–276 in Séminaire Bourbaki 6, Soc. Math. France, Paris, 1995.
  • A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux \normalfont(SGA2), Masson, Paris, 1968.
  • T. H. Gulliksen and O. G. Neg\.ard, “Un complexe résolvant pour certains idéaux déterminantiels”, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A16–A18.
  • M. Hochster and J. A. Eagon, “Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci”, Amer. J. Math. 93 (1971), 1020–1058.
  • R. Ile, “Deformation theory of rank one maximal Cohen–Macaulay modules on hypersurface singularities and the Scandinavian complex”, Compos. Math. 140:2 (2004), 435–446.
  • J. O. Kleppe, “Deformations of graded algebras”, Math. Scand. 45:2 (1979), 205–231.
  • J. O. Kleppe, “Maximal families of Gorenstein algebras”, Trans. Amer. Math. Soc. 358:7 (2006), 3133–3167.
  • J. O. Kleppe, “Unobstructedness and dimension of families of Gorenstein algebras”, Collect. Math. 58:2 (2007), 199–238.
  • J. O. Kleppe and R. M. Miró-Roig, “Dimension of families of determinantal schemes”, Trans. Amer. Math. Soc. 357:7 (2005), 2871–2907. \let
  • J. O. Kleppe and R. M. Miró-Roig, “Unobstructedness and dimension of families of codimension 3 ACM algebras”, pp. 141–164 in Algebra, geometry and their interactions, Contemp. Math. 448, Amer. Math. Soc., Providence, RI, 2007.
  • J. O. Kleppe and C. Peterson, “Maximal Cohen-Macaulay modules and Gorenstein algebras”, J. Algebra 238:2 (2001), 776–800.
  • J. O. Kleppe, J. C. Migliore, R. Miró-Roig, U. Nagel, and C. Peterson, Gorenstein liaison, complete intersection liaison invariants and unobstructedness, Mem. Amer. Math. Soc. 732, 2001.
  • R. M. Miró-Roig, Determinantal ideals, Progress in Mathematics 264, Birkhäuser Verlag, Basel, 2008.
  • W. V. Vasconcelos, Arithmetic of blowup algebras, London Math. Soc. Lecture Note Series 195, Cambridge University Press, Cambridge, 1994.