Algebra & Number Theory

The semigroup of Betti diagrams

Daniel Erman

Full-text: Open access

Abstract

The recent proof of the Boij–Söderberg conjectures reveals new structure about Betti diagrams of modules, giving a complete description of the cone of Betti diagrams. We begin to expand on this new structure by investigating the semigroup of such diagrams. We prove that this semigroup is finitely generated, and answer several other fundamental questions about it.

Article information

Source
Algebra Number Theory, Volume 3, Number 3 (2009), 341-365.

Dates
Received: 9 November 2008
Revised: 22 January 2009
Accepted: 20 February 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513797403

Digital Object Identifier
doi:10.2140/ant.2009.3.341

Mathematical Reviews number (MathSciNet)
MR2525554

Zentralblatt MATH identifier
1173.13013

Subjects
Primary: 13D02: Syzygies, resolutions, complexes
Secondary: 13D25

Keywords
Boij–Söderberg Theory Betti diagrams Betti tables minimal free resoultions

Citation

Erman, Daniel. The semigroup of Betti diagrams. Algebra Number Theory 3 (2009), no. 3, 341--365. doi:10.2140/ant.2009.3.341. https://projecteuclid.org/euclid.ant/1513797403


Export citation

References

  • M. Boij, “Artin level modules”, J. Algebra 226:1 (2000), 361–374.
  • M. Boij and J. Söderberg, “Betti numbers of graded modules and the Multiplicity Conjecture in the non-Cohen-Macaulay case”, preprint, 2008.
  • M. Boij and J. S öderberg, “Graded Betti numbers of Cohen–Macaulay modules and the Multiplicity Conjecture”, J. Lond. Math. Soc. $(2)$ 78 (2008), 85–106.
  • D. A. Buchsbaum and D. Eisenbud, “Some structure theorems for finite free resolutions”, Advances in Math. 12 (1974), 84–139.
  • D. A. Buchsbaum and D. Eisenbud, “Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$”, Amer. J. Math. 99:3 (1977), 447–485.
  • H. Charalambous, E. G. Evans, and M. Miller, “Betti numbers for modules of finite length”, Proc. Amer. Math. Soc. 109:1 (1990), 63–70.
  • D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer, New York, 1995.
  • D. Eisenbud and J. Harris, “Vector spaces of matrices of low rank”, Adv. in Math. 70:2 (1988), 135–155.
  • D. Eisenbud and F.-O. Schreyer, “Betti numbers of graded modules and cohomology of vector bundles”, 22:3 (2009), 859–888.
  • D. Eisenbud, G. Fløystad, and J. Weyman, “The existence of pure free resolutions”, preprint, 2007.
  • D. Erman, Extensions and applications of Boij–Söderberg theory, Ph.D. Thesis, University of California, Berkeley. In preparation.
  • D. Erman, F. Moore, and J. Nilson (editors), “Open questions related to the Boij–Söderberg theorems”, preprint, 2008, math.berkeley.edu/~derman/Papers/questions.pdf.
  • J. Herzog and M. Kühl, “On the Betti numbers of finite pure and linear resolutions”, Comm. Algebra 12:13-14 (1984), 1627–1646.
  • M. Kunte, Gorenstein modules of finite length, Ph.D. thesis, Universität des Saarlandes, 2008.
  • P. Pisón-Casares and A. Vigneron-Tenorio, “$\Bbb N$-solutions to linear systems over $\Bbb Z$”, Linear Algebra Appl. 384 (2004), 135–154.
  • J. S öderberg, “Artinian level modules of embedding dimension two”, J. Pure Appl. Algebra 207:2 (2006), 417–432.
  • B. Sturmfels, Algorithms in invariant theory, Springer, Vienna, 1993. http://www.ams.org/mathscinet-getitem?mr=94m:13004MR 94m:13004