Algebra & Number Theory

Constructing simply laced Lie algebras from extremal elements

Jan Draisma and Jos in ’t panhuis

Full-text: Open access

Abstract

For any finite graph Γ and any field K of characteristic unequal to 2, we construct an algebraic variety X over K whose K-points parametrize K-Lie algebras generated by extremal elements, corresponding to the vertices of the graph, with prescribed commutation relations, corresponding to the nonedges. After that, we study the case where Γ is a connected, simply laced Dynkin diagram of finite or affine type. We prove that X is then an affine space, and that all points in an open dense subset of X parametrize Lie algebras isomorphic to a single fixed Lie algebra. If Γ is of affine type, then this fixed Lie algebra is the split finite-dimensional simple Lie algebra corresponding to the associated finite-type Dynkin diagram. This gives a new construction of these Lie algebras, in which they come together with interesting degenerations, corresponding to points outside the open dense subset. Our results may prove useful for recognizing these Lie algebras.

Article information

Source
Algebra Number Theory, Volume 2, Number 5 (2008), 551-572.

Dates
Received: 17 August 2007
Revised: 6 March 2008
Accepted: 27 May 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513797288

Digital Object Identifier
doi:10.2140/ant.2008.2.551

Mathematical Reviews number (MathSciNet)
MR2429453

Zentralblatt MATH identifier
1169.17013

Subjects
Primary: 17B20: Simple, semisimple, reductive (super)algebras
Secondary: 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13} 17B67: Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras 17B01: Identities, free Lie (super)algebras

Keywords
Lie algebras extremal elements generators and relations

Citation

Draisma, Jan; in ’t panhuis, Jos. Constructing simply laced Lie algebras from extremal elements. Algebra Number Theory 2 (2008), no. 5, 551--572. doi:10.2140/ant.2008.2.551. https://projecteuclid.org/euclid.ant/1513797288


Export citation

References

  • Y. V. Billig, “Modular affine Lie algebras”, Mat. Sb. 181:8 (1990), 1130–1143. In Russian; translated in Math. USSR-Sb. 70:2 (1991), 573–586.
  • R. W. Carter, Simple groups of Lie type, Pure and Applied Mathematics 28, Wiley, London, 1972.
  • V. I. Chernousov, “The Hasse principle for groups of type $E\sb 8$”, Dokl. Akad. Nauk SSSR 306:5 (1989), 1059–1063. In Russian; translated in Soviet Math. Dokl. 39:3 (1989), 592–596.
  • A. M. Cohen and G. Ivanyos, “Root filtration spaces from Lie algebras and abstract root groups”, J. Algebra 300:2 (2006), 433–454.
  • A. M. Cohen, A. Steinbach, R. Ushirobira, and D. Wales, “Lie algebras generated by extremal elements”, J. Algebra 236:1 (2001), 122–154.
  • V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, 1990.
  • A. I. Kostrikin, “Sandwiches in Lie algebras”, Math. USSR, Sb. 38 (1981), 1–9.
  • J. C. H. W. in 't panhuis, E. J. Postma, and D. A. Roozemond, “Extremal presentations for classical Lie algebras”, Preprint, 2007.
  • E. J. Postma, From Lie algebras to geometry and back, Thesis, Technische Universiteit Eindhoven, 2007, http://alexandria.tue.nl/extra2/200710440.pdf.
  • A. Premet and H. Strade, “Simple Lie algebras of small characteristic, I: Sandwich elements”, J. Algebra 189:2 (1997), 419–480.
  • D. A. Roozemond, Lie algebras generated by extremal elements, Master's thesis, Technische Universiteit Eindhoven, 2005, http://alexandria.tue.nl/extra1/afstversl/wsk-i/roozemond2005.pdf.
  • G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete 40, Springer, New York, 1967.
  • H. Strade, Simple Lie algebras over fields of positive characteristic, I: Structure theory, de Gruyter Expositions in Mathematics 38, de Gruyter, Berlin, 2004.
  • E. I. Zel'manov and A. I. Kostrikin, “A theorem on sandwich algebras”, Trudy Mat. Inst. Steklov. 183 (1990), 106–111, 225. In Russian; translated in Proc. Steklov Inst. Math. 183:4 (1991), 121–126.