Algebra & Number Theory

Surfaces over a p-adic field with infinite torsion in the Chow group of 0-cycles

Masanori Asakura and Shuji Saito

Full-text: Open access

Abstract

We give an example of a projective smooth surface X over a p-adic field K such that for any prime different from p, the -primary torsion subgroup of CH0(X), the Chow group of 0-cycles on X, is infinite. A key step in the proof is disproving a variant of the Bloch–Kato conjecture which characterizes the image of an -adic regulator map from a higher Chow group to a continuous étale cohomology of X by using p-adic Hodge theory. With the aid of the theory of mixed Hodge modules, we reduce the problem to showing the exactness of the de Rham complex associated to a variation of Hodge structure, which is proved by the infinitesimal method in Hodge theory. Another key ingredient is the injectivity result on the cycle class map for Chow group of 1-cycles on a proper smooth model of X over the ring of integers in K, due to K. Sato and the second author.

Article information

Source
Algebra Number Theory, Volume 1, Number 2 (2007), 163-181.

Dates
Received: 30 January 2007
Revised: 15 August 2007
Accepted: 15 September 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513797126

Digital Object Identifier
doi:10.2140/ant.2007.1.163

Mathematical Reviews number (MathSciNet)
MR2361939

Zentralblatt MATH identifier
1161.14300

Subjects
Primary: 14C25: Algebraic cycles
Secondary: 14G20: Local ground fields 14C30: Transcendental methods, Hodge theory [See also 14D07, 32G20, 32J25, 32S35], Hodge conjecture

Keywords
Chow group torsion $0$-cycles on surface

Citation

Asakura, Masanori; Saito, Shuji. Surfaces over a p-adic field with infinite torsion in the Chow group of 0-cycles. Algebra Number Theory 1 (2007), no. 2, 163--181. doi:10.2140/ant.2007.1.163. https://projecteuclid.org/euclid.ant/1513797126


Export citation

References

  • M. Asakura, “On the $K\sb 1$-groups of algebraic curves”, Invent. Math. 149:3 (2002), 661–685.
  • M. Asakura, “Surjectivity of $p$-adic regulators on $K\sb 2$ of Tate curves”, Invent. Math. 165:2 (2006), 267–324.
  • M. Asakura and S. Saito, “Generalized Jacobian rings for open complete intersections”, Math. Nachr. 279:1-2 (2006), 5–37.
  • M. Asakura and S. Saito, “Noether-Lefschetz locus for Beilinson-Hodge cycles. I”, Math. Z. 252:2 (2006), 251–273.
  • S. Bloch and K. Kato, “$L$-functions and Tamagawa numbers of motives”, pp. 333–400 in The Grothendieck Festschrift, Vol. I, edited by P. Cartier et al., Progr. Math. 86, Birkhäuser, Boston, 1990.
  • S. Bloch and A. Ogus, “Gersten's conjecture and the homology of schemes”, Ann. Sci. École Norm. Sup. $(4)$ 7 (1974), 181–201.
  • J.-L. Colliot-Thélène, “L'arithmétique du groupe de Chow des zéro-cycles”, J. Théor. Nombres Bordeaux 7:1 (1995), 51–73. Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993).
  • J.-L. Colliot-Thélène and W. Raskind, “Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: un théorème de finitude pour la torsion”, Invent. Math. 105:2 (1991), 221–245.
  • J.-L. Colliot-Thélène, J.-J. Sansuc, and C. Soulé, “Torsion dans le groupe de Chow de codimension deux”, Duke Math. J. 50:3 (1983), 763–801.
  • P. Deligne, Équations différentielles à points singuliers réguliers, Springer, Berlin, 1970. Lecture Notes in Mathematics, Vol. 163.
  • P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57.
  • P. Deligne (editor), Cohomologie étale \normalfont(SGA 4${1\over 2}$), Lecture Notes in Math. 569, Springer, Berlin, 1977.
  • P. Deligne, “La conjecture de Weil. II”, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252.
  • P. Deligne and D. Mumford, “The irreducibility of the space of curves of given genus”, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109.
  • H. Esnault and E. Viehweg, “Deligne-Beĭlinson cohomology”, pp. 43–91 in Beĭ linson's conjectures on special values of $L$-functions, edited by M. Rapoport et al., Perspect. Math. 4, Academic Press, Boston, 1988.
  • K. Fujiwara, “A proof of the absolute purity conjecture (after Gabber)”, pp. 153–183 in Algebraic geometry (Azumino, Japan, 2000), edited by S. Usui et al., Adv. Stud. Pure Math. 36, Math. Soc. Japan, Tokyo, 2002.
  • T. Geisser and M. Levine, “The Bloch–Kato conjecture and a theorem of Suslin–Voevodsky”, J. Reine Angew. Math. 530 (2001), 55–103.
  • H. Gillet, “Riemann-Roch theorems for higher algebraic $K$-theory”, Adv. in Math. 40:3 (1981), 203–289.
  • M. L. Green, “Infinitesimal methods in Hodge theory”, pp. 1–92 in Algebraic cycles and Hodge theory (Torino, 1993), edited by A. Albano and F. Bardelli, Lecture Notes in Math. 1594, Springer, Berlin, 1994.
  • M. Green and P. Griffiths, “The regulator map for a general curve”, pp. 117–127 in Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000), edited by A. Bertram et al., Contemp. Math. 312, Amer. Math. Soc., Providence, RI, 2002.
  • A. Grothendieck (editor), Groupes de monodromie en géométrie algébrique, I (SGA 7 I), Lecture Notes in Math. 288, Springer, Berlin, 1972.
  • U. Jannsen, “Continuous étale cohomology”, Math. Ann. 280:2 (1988), 207–245.
  • U. Jannsen, “On the $l$-adic cohomology of varieties over number fields and its Galois cohomology”, pp. 315–360 in Galois groups over ${\bf Q}$ (Berkeley, CA, 1987), edited by Y. Ihara et al., Math. Sci. Res. Inst. Publ. 16, Springer, New York, 1989.
  • S. E. Landsburg, “Relative Chow groups”, Illinois J. Math. 35:4 (1991), 618–641.
  • A. Langer and S. Saito, “Torsion zero-cycles on the self-product of a modular elliptic curve”, Duke Math. J. 85:2 (1996), 315–357.
  • M. Levine, “Techniques of localization in the theory of algebraic cycles”, J. Algebraic Geom. 10:2 (2001), 299–363.
  • A. S. Merkurjev and A. A. Suslin, “$K$-cohomology of Severi–Brauer varieties and the norm residue homomorphism”, Dokl. Akad. Nauk SSSR 264:3 (1982), 555–559. In Russian; translated in Math. USSR Izv. 21:2 (1983), 307–340.
  • N. Otsubo, “Recent progress on the finiteness of torsion algebraic cycles”, pp. 313–323 in Class field theory–-its centenary and prospect (Tokyo, 1998), edited by K. Miyake, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.
  • W. Raskind, “Torsion algebraic cycles on varieties over local fields”, pp. 343–388 in Algebraic $K$-theory: connections with geometry and topology (Lake Louise, AB, 1987), edited by J. F. Jardine and V. P. Snaith, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 279, Kluwer Acad. Publ., Dordrecht, 1989.
  • A. Rosenschon and V. Srinivas, “Algebraic cycles on products of elliptic curves over $p$-adic fields”, Math. Ann. 339:2 (2007), 241–249.
  • S. Saito, “Class field theory for curves over local fields”, J. Number Theory 21:1 (1985), 44–80.
  • M. Saito, “Mixed Hodge modules”, Publ. Res. Inst. Math. Sci. 26:2 (1990), 221–333.
  • S. Saito and K. Sato, “Cycle class maps for arithmetic schemes”, preprint, 2006.
  • S. Saito and K. Sato, “Finiteness theorem on zero-cycles over $p$-adic fields”, preprint, 2006. To appear in Ann. Math.
  • T. Sato, On $K$-cohomology of elliptic curves over local fields, master's thesis, Tokyo University, 1985. In Japanese.
  • P. Schneider, “Introduction to the Beĭ linson conjectures”, pp. 1–35 in Beĭ linson's conjectures on special values of $L$-functions, edited by N. Rapoport, M. nd Schappacher and P. Schneider, Perspect. Math. 4, Academic Press, Boston, 1988.
  • J.-P. Serre, Cohomologie galoisienne, vol. 1965, 3rd ed., Lecture Notes in Mathematics 5, Springer, Berlin, 1965.
  • A. A. Suslin, “Algebraic $K$-theory and the norm residue homomorphism”, J. Soviet Math. 30 (1985), 2556–2611.
  • C. Voisin, “Variations of Hodge structure and algebraic cycles”, pp. 706–715 in Proceedings of the International Congress of Mathematicians (Zürich, 1994), vol. 1, edited by S. D. Chatterji, Birkhäuser, Basel, 1995.