Algebra & Number Theory

Tetrahedral elliptic curves and the local-global principle for isogenies

Barinder Banwait and John Cremona

Full-text: Open access

Abstract

We study the failure of a local-global principle for the existence of l-isogenies for elliptic curves over number fields K. Sutherland has shown that over there is just one failure, which occurs for l=7 and a unique j-invariant, and has given a classification of such failures when K does not contain the quadratic subfield of the l-th cyclotomic field. In this paper we provide a classification of failures for number fields which do contain this quadratic field, and we find a new “exceptional” source of such failures arising from the exceptional subgroups of PGL2(Fl). By constructing models of two modular curves, Xs(5) and XS4(13), we find two new families of elliptic curves for which the principle fails, and we show that, for quadratic fields, there can be no other exceptional failures.

Article information

Source
Algebra Number Theory, Volume 8, Number 5 (2014), 1201-1229.

Dates
Received: 3 September 2013
Revised: 25 March 2014
Accepted: 26 April 2014
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513730229

Digital Object Identifier
doi:10.2140/ant.2014.8.1201

Mathematical Reviews number (MathSciNet)
MR3263141

Zentralblatt MATH identifier
1303.11066

Subjects
Primary: 11G05: Elliptic curves over global fields [See also 14H52]
Secondary: 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35]

Keywords
elliptic curves local-global isogeny exceptional modular curves

Citation

Banwait, Barinder; Cremona, John. Tetrahedral elliptic curves and the local-global principle for isogenies. Algebra Number Theory 8 (2014), no. 5, 1201--1229. doi:10.2140/ant.2014.8.1201. https://projecteuclid.org/euclid.ant/1513730229


Export citation

References

  • S. Anni, “A local-to-global principle for isogenies of prime degree over number fields”, J. London Math. Soc. 89:3 (2014), 745–761.
  • A. O. L. Atkin and W. C. W. Li, “Twists of newforms and pseudo-eigenvalues of $W$-operators”, Invent. Math. 48:3 (1978), 221–243.
  • B. Banwait and J. Cremona, “Computing the modular curves $\mathrm{X}_{\rm sp} (13)$, $\mathrm{X}_{\rm ns} (13)$ and $\mathrm{X}_{\mathrm{A}_4}(13)$ using modular symbols in Sage (annotated Sage code)”, preprint, 2013, http://arxiv.org/src/1306.6818v3/anc/X13.pdf.
  • B. Baran, “An exceptional isomorphism between modular curves of level $13$ via Torelli's theorem”, preprint, 2012, http://www-personal.umich.edu/~bubaran/torelli.pdf.
  • B. Baran, “An exceptional isomorphism between modular curves of level $13$”, preprint, 2013, http://www-personal.umich.edu/~bubaran/bbaran.pdf.
  • F. Bars, “On quadratic points of classical modular curves”, preprint, 2012, http://mat.uab.es/~francesc/surveyMomose.pdf.
  • Y. Bilu, P. Parent, and M. Rebolledo, “Rational points on $X\sp +\sb 0(p\sp r)$”, Ann. Inst. Fourier $($Grenoble$)$ 63:3 (2013), 957–984.
  • W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system, I: The user language”, J. Symbolic Comput. 24:3-4 (1997), 235–265.
  • J. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, 1997.
  • J. Cremona, “X13 (Sage worksheet)”, 2014, http://homepages.warwick.ac.uk/staff/J.E.Cremona/ftp/X13.sws.
  • C. J. Cummins and S. Pauli, “Congruence subgroups of ${\rm PSL}(2,{\mathbb Z})$ of genus less than or equal to 24”, Experiment. Math. 12:2 (2003), 243–255.
  • C. W. Curtis and I. Reiner, Methods of representation theory, II: With applications to finite groups and orders, Wiley, New York, 1987.
  • A. David, “Borne uniforme pour les homothéties dans l'image de Galois associée aux courbes elliptiques”, J. Num. Theory 131:11 (2011), 2175–2191.
  • L. E. Dickson, Linear groups: With an exposition of the Galois field theory, B. G. Teubner, Leipzig, 1901.
  • N. Freitas, B. V., L. Hung, and S. Siksek, “Elliptic curves over real quadratic fields are modular”, preprint, 2013.
  • S. Galbraith, Equations for modular curves, Ph.D. thesis, University of Oxford, 1996, https://www.math.auckland.ac.nz/~sgal018/thesis.pdf.
  • J.-i. Igusa, “Kroneckerian model of fields of elliptic modular functions”, Amer. J. Math. 81 (1959), 561–577.
  • E. Kani and M. Rosen, “Idempotent relations and factors of Jacobians”, Math. Ann. 284:2 (1989), 307–327.
  • S. Lang, Introduction to modular forms, Grundlehren Math. Wiss. 222, Springer, New York, 1976.
  • S. Lang, Algebra, 3rd ed., Graduate Texts in Mathematics 211, Springer, New York, 2002.
  • G. Ligozat, “Courbes modulaires de niveau $11$”, pp. 149–237 in Modular functions of one variable, V (Bonn, 1976), edited by J. P. Serre and D. B. Zagier, Lecture Notes in Math. 601, Springer, Berlin, 1977.
  • R. S. Maier, “On rationally parametrized modular equations”, J. Ramanujan Math. Soc. 24:1 (2009), 1–73.
  • B. Mazur, “Modular curves and the Eisenstein ideal”, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186.
  • B. Mazur, “Rational points on modular curves”, pp. 107–148 in Modular functions of one variable, V (Bonn, 1976), edited by J. P. Serre and D. B. Zagier, Lecture Notes in Math. 601, Springer, Berlin, 1977.
  • The Sage Development Team, Sage Mathematics Software (Version 5.10), 2013, http://www.sagemath.org.
  • J.-P. Serre, “Propriétés galoisiennes des points d'ordre fini des courbes elliptiques”, Invent. Math. 15:4 (1972), 259–331.
  • B. de Smit and B. Edixhoven, “Sur un résultat d'Imin Chen”, Math. Res. Lett. 7:2-3 (2000), 147–153.
  • G. Stevens, Arithmetic on modular curves, Progress in Mathematics 20, Birkhäuser, Boston, 1982.
  • A. V. Sutherland, “A local-global principle for rational isogenies of prime degree”, J. Théor. Nombres Bordeaux 24:2 (2012), 475–485.
  • C. L. Turner, Lattice methods for finding rational points on varieties over number fields, Ph.D. thesis, University of Warwick, 2013, http://webcat.warwick.ac.uk/record=b2715884 S1.