Algebra & Number Theory
- Algebra Number Theory
- Volume 7, Number 6 (2013), 1451-1479.
Counting rational points over number fields on a singular cubic surface
Full-text: Open access
Abstract
A conjecture of Manin predicts the distribution of -rational points on certain algebraic varieties defined over a number field . In recent years, a method using universal torsors has been successfully applied to several hard special cases of Manin’s conjecture over the field . Combining this method with techniques developed by Schanuel, we give a proof of Manin’s conjecture over arbitrary number fields for the singular cubic surface given by the equation .
Article information
Source
Algebra Number Theory, Volume 7, Number 6 (2013), 1451-1479.
Dates
Received: 10 April 2012
Revised: 30 July 2012
Accepted: 7 September 2012
First available in Project Euclid: 20 December 2017
Permanent link to this document
https://projecteuclid.org/euclid.ant/1513730034
Digital Object Identifier
doi:10.2140/ant.2013.7.1451
Mathematical Reviews number (MathSciNet)
MR3107569
Zentralblatt MATH identifier
1343.11043
Subjects
Primary: 11D45: Counting solutions of Diophantine equations
Secondary: 14G05: Rational points
Keywords
Manin's conjecture number fields rational points singular cubic surface
Citation
Frei, Christopher. Counting rational points over number fields on a singular cubic surface. Algebra Number Theory 7 (2013), no. 6, 1451--1479. doi:10.2140/ant.2013.7.1451. https://projecteuclid.org/euclid.ant/1513730034
References
- S. Baier and T. D. Browning, “Inhomogeneous cubic congruences and rational points on Del Pezzo surfaces”, J. Reine Angew. Math. 680 (2013), 69–151.
- V. V. Batyrev and Y. Tschinkel, “Manin's conjecture for toric varieties”, J. Algebraic Geom. 7:1 (1998), 15–53.
- V. V. Batyrev and Y. Tschinkel, “Tamagawa numbers of polarized algebraic varieties”, pp. 299–340 in Nombre et répartition de points de hauteur bornée (Paris, 1996), Astérisque 251, Société Mathématique de France, Paris, 1998.
- R. de la Bretèche, “Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière”, pp. 51–77 in Nombre et répartition de points de hauteur bornée (Paris, 1996), Astérisque 251, Société Mathématique de France, Paris, 1998.
- R. de la Bretèche, “Nombre de points de hauteur bornée sur les surfaces de del Pezzo de degré 5”, Duke Math. J. 113:3 (2002), 421–464. Mathematical Reviews (MathSciNet): MR2003m:14033
Zentralblatt MATH: 1054.14025
Digital Object Identifier: doi:10.1215/S0012-7094-02-11332-5
Project Euclid: euclid.dmj/1087575314 - R. de la Bretèche and T. D. Browning, “Manin's conjecture for quartic del Pezzo surfaces with a conic fibration”, Duke Math. J. 160:1 (2011), 1–69. Mathematical Reviews (MathSciNet): MR2012k:11038
Zentralblatt MATH: 1245.11044
Digital Object Identifier: doi:10.1215/00127094-1443466
Project Euclid: euclid.dmj/1317149891 - R. de la Bretèche and É. Fouvry, “L'éclaté du plan projectif en quatre points dont deux conjugués”, J. Reine Angew. Math. 576 (2004), 63–122.
- R. de la Bretèche and P. Swinnerton-Dyer, “Fonction zêta des hauteurs associée à une certaine surface cubique”, Bull. Soc. Math. France 135:1 (2007), 65–92. Mathematical Reviews (MathSciNet): MR2009f:14041
Zentralblatt MATH: 1207.11068
Digital Object Identifier: doi:10.24033/bsmf.2526 - R. de la Bretèche, T. D. Browning, and U. Derenthal, “On Manin's conjecture for a certain singular cubic surface”, Ann. Sci. École Norm. Sup. $(4)$ 40:1 (2007), 1–50. Mathematical Reviews (MathSciNet): MR2008e:11038
Zentralblatt MATH: 1125.14008
Digital Object Identifier: doi:10.1016/j.ansens.2006.12.002 - R. de la Bretèche, T. Browning, and E. Peyre, “On Manin's conjecture for a family of Châtelet surfaces”, Ann. of Math. $(2)$ 175:1 (2012), 297–343. Mathematical Reviews (MathSciNet): MR2874644
Zentralblatt MATH: 1237.11018
Digital Object Identifier: doi:10.4007/annals.2012.175.1.8 - T. D. Browning and U. Derenthal, “Manin's conjecture for a cubic surface with $D\sb 5$ singularity”, Int. Math. Res. Not. 2009:14 (2009), 2620–2647.
- A. Chambert-Loir and Y. Tschinkel, “On the distribution of points of bounded height on equivariant compactifications of vector groups”, Invent. Math. 148:2 (2002), 421–452. Mathematical Reviews (MathSciNet): MR2003d:11094
Zentralblatt MATH: 1067.11036
Digital Object Identifier: doi:10.1007/s002220100200 - C. Christensen and W. Gubler, “Der relative Satz von Schanuel”, Manuscripta Math. 126:4 (2008), 505–525. Mathematical Reviews (MathSciNet): MR2009e:11124
Zentralblatt MATH: 1155.11034
Digital Object Identifier: doi:10.1007/s00229-008-0186-7 - J.-L. Colliot-Thélène and J.-J. Sansuc, “La descente sur les variétés rationnelles”, pp. 223–237 in Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, edited by A. Beauville, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.
- J.-L. Colliot-Thélène and J.-J. Sansuc, “La descente sur les variétés rationnelles, II”, Duke Math. J. 54:2 (1987), 375–492. Mathematical Reviews (MathSciNet): MR89f:11082
Zentralblatt MATH: 0659.14028
Digital Object Identifier: doi:10.1215/S0012-7094-87-05420-2
Project Euclid: euclid.dmj/1077305668 - U. Derenthal and F. Janda, “Gaussian rational points on a singular cubic surface”, pp. 210–230 in Torsors, étale homotopy and applications to rational points (Edinburgh, 2011), London Math. Soc. Lecture Note Series 405, Cambridge Univ. Press, 2013.
- É. Fouvry, “Sur la hauteur des points d'une certaine surface cubique singulière”, pp. 31–49 in Nombre et répartition de points de hauteur bornée (Paris, 1996), Astérisque 251, Société Mathématique de France, Paris, 1998.
- J. Franke, Y. I. Manin, and Y. Tschinkel, “Rational points of bounded height on Fano varieties”, Invent. Math. 95:2 (1989), 421–435. Mathematical Reviews (MathSciNet): MR89m:11060
Zentralblatt MATH: 0674.14012
Digital Object Identifier: doi:10.1007/BF01393904 - D. R. Heath-Brown and B. Z. Moroz, “The density of rational points on the cubic surface $X\sb 0\sp 3=X\sb 1X\sb 2X\sb 3$”, Math. Proc. Cambridge Philos. Soc. 125:3 (1999), 385–395. Mathematical Reviews (MathSciNet): MR2000f:11080
Zentralblatt MATH: 0938.11016
Digital Object Identifier: doi:10.1017/S0305004198003089 - S. Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics 110, Springer, New York, 1994.
- P. Le Boudec, “Manin's conjecture for a cubic surface with $2A_2+A_1$ singularity type”, Math. Proc. Cambridge Philos. Soc. 153:3 (2012), 419–455. Mathematical Reviews (MathSciNet): MR2990624
Digital Object Identifier: doi:10.1017/S030500411200031X - D. Masser and J. D. Vaaler, “Counting algebraic numbers with large height. II”, Trans. Amer. Math. Soc. 359:1 (2007), 427–445. Mathematical Reviews (MathSciNet): MR2008m:11208
Zentralblatt MATH: 1215.11100
Digital Object Identifier: doi:10.1090/S0002-9947-06-04115-8 - E. Peyre, “Hauteurs et mesures de Tamagawa sur les variétés de Fano”, Duke Math. J. 79:1 (1995), 101–218. Mathematical Reviews (MathSciNet): MR96h:11062
Zentralblatt MATH: 0901.14025
Digital Object Identifier: doi:10.1215/S0012-7094-95-07904-6
Project Euclid: euclid.dmj/1077284965 - P. Salberger, “Tamagawa measures on universal torsors and points of bounded height on Fano varieties”, pp. 91–258 in Nombre et répartition de points de hauteur bornée (Paris, 1996), Astérisque 251, Société Mathématique de France, Paris, 1998.
- S. H. Schanuel, “Heights in number fields”, Bull. Soc. Math. France 107:4 (1979), 433–449. Mathematical Reviews (MathSciNet): MR81c:12025
Zentralblatt MATH: 0428.12009
Digital Object Identifier: doi:10.24033/bsmf.1905 - M. Widmer, “Counting primitive points of bounded height”, Trans. Amer. Math. Soc. 362:9 (2010), 4793–4829. Mathematical Reviews (MathSciNet): MR2011i:11099
Zentralblatt MATH: 05791771
Digital Object Identifier: doi:10.1090/S0002-9947-10-05173-1
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Finite descent obstructions and rational points on curves
Stoll, Michael, Algebra & Number Theory, 2007 - Cubic hypersurfaces and a version of the circle method for number fields
Browning, T. D. and Vishe, P., Duke Mathematical Journal, 2014 - Affine congruences and rational points on a certain cubic surface
Le Boudec, Pierre, Algebra & Number Theory, 2014
- Finite descent obstructions and rational points on curves
Stoll, Michael, Algebra & Number Theory, 2007 - Cubic hypersurfaces and a version of the circle method for number fields
Browning, T. D. and Vishe, P., Duke Mathematical Journal, 2014 - Affine congruences and rational points on a certain cubic surface
Le Boudec, Pierre, Algebra & Number Theory, 2014 - The nef cone volume of generalized Del Pezzo surfaces
Derenthal, Ulrich, Joyce, Michael, and Teitler, Zachariah, Algebra & Number Theory, 2008 - Del Pezzo surfaces and representation theory
Serganova, Vera and Skorobogatov, Alexei, Algebra & Number Theory, 2007 - Cohomologie non ramifiée de degré 3 : variétés cellulaires et surfaces de del Pezzo de degré au moins 5
Cao, Yang, Annals of K-Theory, 2018 - Local-global principles for 1-motives
Harari, David and Szamuely, Tamás, Duke Mathematical Journal, 2008 - Hasse principle for Kummer varieties
Harpaz, Yonatan and Skorobogatov, Alexei, Algebra & Number Theory, 2016 - A Gross–Zagier formula for quaternion algebras over totally real fields
Goren, Eyal and Lauter, Kristin, Algebra & Number Theory, 2013 - Rational curves on a smooth Hermitian surface
Ojiro, Norifumi, Hiroshima Mathematical Journal, 2019