Algebra & Number Theory

Weak approximation for cubic hypersurfaces of large dimension

Mike Swarbrick Jones

Full-text: Open access

Abstract

We address the problem of weak approximation for general cubic hypersurfaces defined over number fields with arbitrary singular locus. In particular, weak approximation is established for the smooth locus of projective, geometrically integral, nonconical cubic hypersurfaces of dimension at least 17. The proof utilises the Hardy–Littlewood circle method and the fibration method.

Article information

Source
Algebra Number Theory, Volume 7, Number 6 (2013), 1353-1363.

Dates
Received: 25 October 2011
Revised: 24 July 2012
Accepted: 7 September 2012
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513730031

Digital Object Identifier
doi:10.2140/ant.2013.7.1353

Mathematical Reviews number (MathSciNet)
MR3107566

Zentralblatt MATH identifier
1368.11058

Subjects
Primary: 11G35: Varieties over global fields [See also 14G25]
Secondary: 11D25: Cubic and quartic equations 11D72: Equations in many variables [See also 11P55] 11P55: Applications of the Hardy-Littlewood method [See also 11D85] 14G25: Global ground fields

Keywords
cubic hypersurfaces weak approximation local-global principles fibration method circle method many variables

Citation

Swarbrick Jones, Mike. Weak approximation for cubic hypersurfaces of large dimension. Algebra Number Theory 7 (2013), no. 6, 1353--1363. doi:10.2140/ant.2013.7.1353. https://projecteuclid.org/euclid.ant/1513730031


Export citation

References

  • B. J. Birch and D. J. Lewis, “${\mathfrak p}$-adic forms”, J. Indian Math. Soc. $($N.S.$)$ 23 (1960), 11–32.
  • T. D. Browning, “Rational points on cubic hypersurfaces that split off a form”, Compos. Math. 146:4 (2010), 853–885.
  • J.-L. Colliot-Thélène, “Points rationnels sur les fibrations”, pp. 171–221 in Higher dimensional varieties and rational points (Budapest, 2001), edited by K. B ör öczky, Jr. et al., Bolyai Soc. Math. Stud. 12, Springer, Berlin, 2003. In French.
  • J.-L. Colliot-Thélène and P. Salberger, “Arithmetic on some singular cubic hypersurfaces”, Proc. London Math. Soc. $(3)$ 58:3 (1989), 519–549.
  • J.-L. Colliot-Thélène, J.-J. Sansuc, and P. Swinnerton-Dyer, “Intersections of two quadrics and Châtelet surfaces. I”, J. Reine Angew. Math. 373 (1987), 37–107.
  • D. F. Coray, “Arithmetic on singular cubic surfaces”, Compositio Math. 33:1 (1976), 55–67.
  • D. F. Coray and M. A. Tsfasman, “Arithmetic on singular Del Pezzo surfaces”, Proc. London Math. Soc. $(3)$ 57:1 (1988), 25–87.
  • H. Davenport and D. J. Lewis, “Non-homogeneous cubic equations”, J. London Math. Soc. 39 (1964), 657–671.
  • D. Harari, “Méthode des fibrations et obstruction de Manin”, Duke Math. J. 75:1 (1994), 221–260. In French.
  • D. Harari, “Principe de Hasse et approximation faible sur certaines hypersurfaces”, Ann. Fac. Sci. Toulouse Math. $(6)$ 4:4 (1995), 731–762. In French.
  • H. Hasse, “Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlk örper.”, J. für Math. 153 (1923), 113–130. In German.
  • J. Kollár, “Unirationality of cubic hypersurfaces”, J. Inst. Math. Jussieu 1:3 (2002), 467–476.
  • P. A. B. Pleasants, “Cubic polynomials over algebraic number fields”, J. Number Theory 7:3 (1975), 310–344.
  • C. M. Skinner, “Forms over number fields and weak approximation”, Compositio Math. 106:1 (1997), 11–29.
  • H. P. F. Swinnerton-Dyer, “Two special cubic surfaces”, Mathematika 9 (1962), 54–56.