Algebra & Number Theory

Comparing numerical dimensions

Brian Lehmann

Full-text: Open access

Abstract

The numerical dimension is a numerical measure of the positivity of a pseudoeffective divisor L. There are several proposed definitions of the numerical dimension due to Nakayama and Boucksom et al. We prove the equality of these notions and give several additional characterizations. We also prove some new properties of the numerical dimension.

Article information

Source
Algebra Number Theory, Volume 7, Number 5 (2013), 1065-1100.

Dates
Received: 20 September 2011
Revised: 9 July 2012
Accepted: 3 August 2012
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513730005

Digital Object Identifier
doi:10.2140/ant.2013.7.1065

Mathematical Reviews number (MathSciNet)
MR3101072

Zentralblatt MATH identifier
1281.14006

Subjects
Primary: 14C20: Divisors, linear systems, invertible sheaves

Keywords
divisor numerical dimension

Citation

Lehmann, Brian. Comparing numerical dimensions. Algebra Number Theory 7 (2013), no. 5, 1065--1100. doi:10.2140/ant.2013.7.1065. https://projecteuclid.org/euclid.ant/1513730005


Export citation

References

  • S. Boucksom, “Divisorial Zariski decompositions on compact complex manifolds”, Ann. Sci. École Norm. Sup. $(4)$ 37:1 (2004), 45–76.
  • S. Boucksom, C. Favre, and M. Jonsson, “Differentiability of volumes of divisors and a problem of Teissier”, J. Algebraic Geom. 18:2 (2009), 279–308.
  • S. Boucksom, J.-P. Demailly, M. Păun, and T. Peternell, “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, preprint, 2012. To appear in print J. Algebraic Geom.
  • L. Ein, R. Lazarsfeld, M. Musta\commaaccenttǎ, M. Nakamaye, and M. Popa, “Asymptotic invariants of base loci”, Ann. Inst. Fourier $($Grenoble$)$ 56:6 (2006), 1701–1734.
  • L. Ein, R. Lazarsfeld, M. Musta\commaaccenttă, M. Nakamaye, and M. Popa, “Restricted volumes and base loci of linear series”, Amer. J. Math. 131:3 (2009), 607–651.
  • W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984.
  • Y. Kawamata, “Pluricanonical systems on minimal algebraic varieties”, Invent. Math. 79:3 (1985), 567–588.
  • R. Lazarsfeld, Positivity in algebraic geometry, II: Positivity for vector bundles, and multiplier ideals, Ergeb. Math. Grenzgeb. (3) 49, Springer, Berlin, 2004.
  • R. Lazarsfeld and M. Musta\commaaccenttă, “Convex bodies associated to linear series”, Ann. Sci. Éc. Norm. Supér. $(4)$ 42:5 (2009), 783–835.
  • M. Nakamaye, “Stable base loci of linear series”, Math. Ann. 318:4 (2000), 837–847.
  • M. Nakamaye, “Base loci of linear series are numerically determined”, Trans. Amer. Math. Soc. 355:2 (2003), 551–566.
  • N. Nakayama, Zariski-decomposition and abundance, MSJ Memoirs 14, Mathematical Society of Japan, Tokyo, 2004.
  • I. Swanson, “Linear equivalence of ideal topologies”, Math. Z. 234:4 (2000), 755–775.