Algebra & Number Theory

Galois module structure of local unit groups

Romyar Sharifi

Full-text: Open access

Abstract

We study the groups Ui in the unit filtration of a finite abelian extension K of p for an odd prime p. We determine explicit generators of the Ui as modules over the p-group ring of Gal(Kp). We work in eigenspaces for powers of the Teichmüller character, first at the level of the field of norms for the extension of K by p-power roots of unity and then at the level of K.

Article information

Source
Algebra Number Theory, Volume 7, Number 1 (2013), 157-191.

Dates
Received: 20 August 2011
Revised: 29 November 2011
Accepted: 20 February 2012
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513729932

Digital Object Identifier
doi:10.2140/ant.2013.7.157

Mathematical Reviews number (MathSciNet)
MR3037893

Zentralblatt MATH identifier
1319.11087

Subjects
Primary: 11SXX

Keywords
Galois module structure unit filtration local field

Citation

Sharifi, Romyar. Galois module structure of local unit groups. Algebra Number Theory 7 (2013), no. 1, 157--191. doi:10.2140/ant.2013.7.157. https://projecteuclid.org/euclid.ant/1513729932


Export citation

References

  • C. Greither, “On Chinburg's second conjecture for abelian fields”, J. Reine Angew. Math. 479 (1996), 1–37.
  • J.-P. Serre, Local fields, Graduate Texts in Mathematics 67, Springer, New York, 1979.
  • R. T. Sharifi, “Determination of conductors from Galois module structure”, Math. Z. 241:2 (2002), 227–245.
  • J.-P. Wintenberger, “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. $(4)$ 16:1 (1983), 59–89.