Algebra & Number Theory

Betti numbers of graded modules and the multiplicity conjecture in the non-Cohen–Macaulay case

Mats Boij and Jonas Söderberg

Full-text: Open access

Abstract

We use results of Eisenbud and Schreyer to prove that any Betti diagram of a graded module over a standard graded polynomial ring is a positive linear combination of Betti diagrams of modules with a pure resolution. This implies the multiplicity conjecture of Herzog, Huneke, and Srinivasan for modules that are not necessarily Cohen–Macaulay and also implies a generalized version of these inequalities. We also give a combinatorial proof of the convexity of the simplicial fan spanned by pure diagrams.

Article information

Source
Algebra Number Theory, Volume 6, Number 3 (2012), 437-454.

Dates
Received: 2 July 2010
Revised: 24 January 2011
Accepted: 23 May 2011
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513729798

Digital Object Identifier
doi:10.2140/ant.2012.6.437

Mathematical Reviews number (MathSciNet)
MR2966705

Zentralblatt MATH identifier
1259.13009

Subjects
Primary: 13D02: Syzygies, resolutions, complexes
Secondary: 13A02: Graded rings [See also 16W50]

Keywords
graded modules Betti numbers multiplicity conjecture

Citation

Boij, Mats; Söderberg, Jonas. Betti numbers of graded modules and the multiplicity conjecture in the non-Cohen–Macaulay case. Algebra Number Theory 6 (2012), no. 3, 437--454. doi:10.2140/ant.2012.6.437. https://projecteuclid.org/euclid.ant/1513729798


Export citation

References

  • M. Boij and J. S öderberg, “Graded Betti numbers of Cohen–Macaulay modules and the multiplicity conjecture”, J. Lond. Math. Soc.,(2) 78:1 (2008), 85–106. http://www.ams.org/mathscinet-getitem?mr=2009g:13018MR 2009g:13018
  • D. Eisenbud and F.-O. Schreyer, “Betti numbers of graded modules and cohomology of vector bundles”, J. Amer. Math. Soc. 22:3 (2009), 859–888.
  • D. Eisenbud and F.-O. Schreyer, “Cohomology of coherent sheaves and series of supernatural bundles”, J. Eur. Math. Soc. 12:3 (2010), 703–722.
  • D. Eisenbud, G. Fløystad, and J. Weyman, “The existence of equivariant pure free resolutions”, Ann. Inst. Fourier (Grenoble) 61:3 (2011), 905–926. http://www.emis.de/cgi-bin/MATH-item?139.13023Zbl 139.13023
  • C. A. Francisco, “New approaches to bounding the multiplicity of an ideal”, J. Algebra 299:1 (2006), 309–328.
  • C. A. Francisco and H. Srinivasan, “Multiplicity conjectures”, pp. 145–178 in Syzygies and Hilbert functions, edited by I. Peeva, Lect. Notes Pure Appl. Math. 254, Chapman & Hall/CRC, Boca Raton, FL, 2007.
  • C. A. Francisco and A. Van Tuyl, “Some families of componentwise linear monomial ideals”, Nagoya Math. J. 187 (2007), 115–156.
  • M. Goff, “On the multiplicity conjecture for non-Cohen–Macaulay simplicial complexes”, preprint, 2008.
  • L. H. Gold, “A degree bound for codimension two lattice ideals”, J. Pure Appl. Algebra 182:2-3 (2003), 201–207.
  • L. Gold, H. Schenck, and H. Srinivasan, “Betti numbers and degree bounds for some linked zero-schemes”, J. Pure Appl. Algebra 210:2 (2007), 481–491.
  • D. Grayson and M. Stillman, “Macaulay 2, a software system for research in algebraic geometry”, 1993, http://www.math.uiuc.edu/Macaulay2/.
  • E. Guardo and A. Van Tuyl, “Powers of complete intersections: graded Betti numbers and applications”, Illinois J. Math. 49:1 (2005), 265–279. http://www.zentralblatt-math.org/zmath/en/search/?an=1089.13008Zbl 1089.13008
  • J. Herzog and M. Kühl, “On the Betti numbers of finite pure and linear resolutions”, Comm. Algebra 12:13-14 (1984), 1627–1646.
  • J. Herzog and H. Srinivasan, “Bounds for multiplicities”, Trans. Amer. Math. Soc. 350:7 (1998), 2879–2902.
  • J. Herzog and X. Zheng, “Notes on the multiplicity conjecture”, Collect. Math. 57:2 (2006), 211–226.
  • J. Herzog and X. Zheng, “Bounds for Hilbert coefficients”, Proc. Amer. Math. Soc. 137:2 (2009), 487–494.
  • T. Hibi and P. Singla, “Linear balls and the multiplicity conjecture”, J. Algebra 319:10 (2008), 4372–4390.
  • C. Huneke and M. Miller, “A note on the multiplicity of Cohen–Macaulay algebras with pure resolutions”, Canad. J. Math. 37:6 (1985), 1149–1162. http://www.zentralblatt-math.org/zmath/en/search/?an=0579.13012Zbl 0579.13012
  • M. Kubitzke and V. Welker, “The multiplicity conjecture for barycentric subdivisions”, preprint, 2006.
  • J. Migliore, U. Nagel, and T. R ömer, “The multiplicity conjecture in low codimensions”, Math. Res. Lett. 12:5 (2005), 731–747.
  • J. Migliore, U. Nagel, and T. R ömer, “Extensions of the multiplicity conjecture”, Trans. Amer. Math. Soc. 360:6 (2008), 2965–2985.
  • J. C. Migliore, U. Nagel, and F. Zanello, “An improved multiplicity conjecture for codimension 3 Gorenstein algebras”, Comm. Algebra 36:1 (2008), 112–119. http://www.ams.org/mathscinet-getitem?mr=2008k:13033MR 2008k:13033
  • R. M. Miró-Roig, “A note on the multiplicity of determinantal ideals”, J. Algebra 299:2 (2006), 714–724.
  • T. J. Puthenpurakal, “On the upper bound of the multiplicity conjecture”, Proc. Amer. Math. Soc. 136:10 (2008), 3429–3434.
  • T. R ömer, “Note on bounds for multiplicities”, J. Pure Appl. Algebra 195:1 (2005), 113–123.
  • S. Seo and H. Srinivasan, “Multiplicity of codimension three almost complete intersections”, preprint, 2007.
  • H. Srinivasan, “A note on the multiplicities of Gorenstein algebras”, J. Algebra 208:2 (1998), 425–443.
  • F. Zanello, “Improving the bounds of the multiplicity conjecture: the codimension 3 level case”, J. Pure Appl. Algebra 209:1 (2007), 79–89.