Algebra & Number Theory

Coleman maps and the $p$-adic regulator

Antonio Lei, David Loeffler, and Sarah Livia Zerbes

Full-text: Open access

Abstract

We study the Coleman maps for a crystalline representation V with non-negative Hodge–Tate weights via Perrin-Riou’s p-adic “regulator” or “expanded logarithm” map V. Denote by (Γ) the algebra of p-valued distributions on Γ= Gal(p(μp)p). Our first result determines the (Γ)-elementary divisors of the quotient of Dcris(V)(Brig,p+)ψ=0 by the (Γ)-submodule generated by (φ(V))ψ=0, where (V) is the Wach module of V. By comparing the determinant of this map with that of V (which can be computed via Perrin-Riou’s explicit reciprocity law), we obtain a precise description of the images of the Coleman maps. In the case when V arises from a modular form, we get some stronger results about the integral Coleman maps, and we can remove many technical assumptions that were required in our previous work in order to reformulate Kato’s main conjecture in terms of cotorsion Selmer groups and bounded p-adic L-functions.

Article information

Source
Algebra Number Theory, Volume 5, Number 8 (2011), 1095-1131.

Dates
Received: 26 November 2010
Revised: 23 February 2011
Accepted: 25 March 2011
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513729735

Digital Object Identifier
doi:10.2140/ant.2011.5.1095

Mathematical Reviews number (MathSciNet)
MR2948474

Zentralblatt MATH identifier
1271.11100

Subjects
Primary: 11R23: Iwasawa theory
Secondary: 11F80: Galois representations 11S25: Galois cohomology [See also 12Gxx, 16H05]

Keywords
$p$-adic regulator Wach module Selmer groups of modular forms

Citation

Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia. Coleman maps and the $p$-adic regulator. Algebra Number Theory 5 (2011), no. 8, 1095--1131. doi:10.2140/ant.2011.5.1095. https://projecteuclid.org/euclid.ant/1513729735


Export citation

References

  • Y. Amice and J. Vélu, “Distributions $p$-adiques associées aux séries de Hecke”, pp. 119–131 in Journées Arithmétiques de Bordeaux (Bordeaux, 1974), Astérisque 24-25, Soc. Math. France, Paris, 1975.
  • J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups, Astérisque 324, 2009.
  • L. Berger, “Représentations $p$-adiques et équations différentielles”, Invent. Math. 148:2 (2002), 219–284.
  • L. Berger, “Bloch and Kato's exponential map: three explicit formulas”, pp. 99–129 in Kazuya Kato's fiftieth birthday, edited by S. Bloch et al., Documenta Mathematica, Bielefeld, 2003. Collection appeared as an unnumbered extra volume of Doc. Math. (2003).
  • L. Berger, “Limites de représentations cristallines”, Compos. Math. 140:6 (2004), 1473–1498.
  • L. Berger, H. Li, and H. J. Zhu, “Construction of some families of 2-dimensional crystalline representations”, Math. Ann. 329:2 (2004), 365–377.
  • F. Cherbonnier and P. Colmez, “Théorie d'Iwasawa des représentations $p$-adiques d'un corps local”, J. Amer. Math. Soc. 12:1 (1999), 241–268.
  • P. Colmez, “Théorie d'Iwasawa des représentations de de Rham d'un corps local”, Ann. of Math. $(2)$ 148:2 (1998), 485–571.
  • P. Deligne, “Formes modulaires et représentations $\ell$-adiques”, pp. 139–172 (exposé 355) in Séminaire Bourbaki, 1968/69, Lecture Notes in Mathematics 179, Springer, Berlin, 1971.
  • K. Kato, “$p$-adic Hodge theory and values of zeta functions of modular forms”, pp. 117–290 in Cohomologies $p$-adiques et applications arithmétiques, III, edited by P. Berthelot et al., Astérisque 295, Société Mathématique de France, Paris, 2004.
  • M. Kurihara and R. Pollack, “Two $p$-adic $L$-functions and rational points on elliptic curves with supersingular reduction”, pp. 300–332 in $L$-functions and Galois representations (Durham, 2004), edited by D. Burns et al., London Math. Soc. Lecture Note Ser. 320, Cambridge Univ. Press, 2007.
  • S. Lang, Algebra, 3rd ed., Graduate Texts in Mathematics 211, Springer, New York, 2002.
  • A. Lei, “Iwasawa theory for modular forms at supersingular primes”, Compos. Math. 147:3 (2011), 803–838.
  • A. Lei, D. Loeffler, and S. L. Zerbes, “Wach modules and Iwasawa theory for modular forms”, Asian J. Math. 14:4 (2010), 475–528.
  • D. Loeffler and S. L. Zerbes, “Wach modules and critical slope $p$-adic $L$-functions”, J. Reine Angew. Math. (2012).
  • J. S. Milne, “Motives over finite fields”, pp. 401–459 in Motives (Seattle, 1991), edited by U. Jannsen et al., Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence, RI, 1994.
  • B. Perrin-Riou, “Théorie d'Iwasawa des représentations $p$-adiques sur un corps local”, Invent. Math. 115:1 (1994), 81–161.
  • B. Perrin-Riou, Fonctions $L$ $p$-adiques des représentations $p$-adiques, Astérisque 229, Soc. Mat. de France, Paris, 1995.
  • B. Perrin-Riou, Théorie d'Iwasawa des représentations $p$-adiques semi-stables, Mém. Soc. Math. Fr. $($N.S.$)$ 84, Soc. Mat. de France, Paris, 2001.
  • R. Pollack, “On the $p$-adic $L$-function of a modular form at a supersingular prime”, Duke Math. J. 118:3 (2003), 523–558.
  • P. Schneider and J. Teitelbaum, “Algebras of $p$-adic distributions and admissible representations”, Invent. Math. 153:1 (2003), 145–196.
  • F. I. Sprung, “Iwasawa theory for elliptic curves at supersingular primes: beyond the case $a_p=0$”, preprint, 2009.