Algebra & Number Theory

A categorical proof of the Parshin reciprocity laws on algebraic surfaces

Denis Osipov and Xinwen Zhu

Full-text: Open access

Abstract

We define and study the 2-category of torsors over a Picard groupoid, a central extension of a group by a Picard groupoid, and commutator maps in this central extension. Using this in the context of two-dimensional local fields and two-dimensional adèle theory we obtain the two-dimensional tame symbol and a new proof of Parshin reciprocity laws on an algebraic surface.

Article information

Source
Algebra Number Theory, Volume 5, Number 3 (2011), 289-337.

Dates
Received: 27 February 2010
Revised: 25 October 2010
Accepted: 21 November 2010
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513729648

Digital Object Identifier
doi:10.2140/ant.2011.5.289

Mathematical Reviews number (MathSciNet)
MR2833793

Zentralblatt MATH identifier
1237.19007

Subjects
Primary: 19F15: Symbols and arithmetic [See also 11R37]
Secondary: 18D05: Double categories, 2-categories, bicategories and generalizations

Keywords
Picard groupoids central extensions commutator maps two-dimensional local fields higher adeles reciprocity laws

Citation

Osipov, Denis; Zhu, Xinwen. A categorical proof of the Parshin reciprocity laws on algebraic surfaces. Algebra Number Theory 5 (2011), no. 3, 289--337. doi:10.2140/ant.2011.5.289. https://projecteuclid.org/euclid.ant/1513729648


Export citation

References

  • E. Arbarello, C. De Concini, V. G. Kac, and C. Procesi, “Moduli spaces of curves and representation theory”, Comm. Math. Phys. 117:1 (1988), 1–36.
  • S. Arkhipov and K. Kremnizer, “2-gerbes and 2-Tate spaces”, pp. 23–35 in Arithmetic and geometry around quantization, edited by O. Ceyhan et al., Progr. Math. 279, Birkhäuser, Boston, MA, 2010.
  • J. C. Baez and M. Neuchl, “Higher-dimensional algebra, I: Braided monoidal $2$-categories”, Adv. Math. 121:2 (1996), 196–244.
  • A. A. Beilinson, “Residues and adèles”, Funktsional. Anal. i Prilozhen. 14:1 (1980), 44–45. In Russian; translated in Func. Anal. Appl. 14:1 (1980), 34–35.
  • A. A. Beilinson, “How to glue perverse sheaves”, pp. 42–51 in $K$-theory, arithmetic and geometry (Moscow, 1984–1986), edited by Y. I. Manin, Lecture Notes in Math. 1289, Springer, Berlin, 1987.
  • A. Beilinson, S. Bloch, and H. Esnault, “$\epsilon$-factors for Gauss–Manin determinants”, Mosc. Math. J. 2:3 (2002), 477–532.
  • L. Breen, “Théorie de Schreier supérieure”, Ann. Sci. École Norm. Sup. $(4)$ 25:5 (1992), 465–514.
  • L. Breen, On the classification of $2$-gerbes and $2$-stacks, Astérisque 225, Société mathématique de France, Paris, 1994.
  • L. Breen, “Monoidal categories and multiextensions”, Compositio Math. 117:3 (1999), 295–335.
  • P. Deligne, “La formule de dualité globale”, pp. 481–587 in Théorie des topos et cohomologie étale des schémas (Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 $=$ SGA 4), vol. 3, edited by M. Artin et al., Lecture Notes in Math. 305, Springer, Berlin, 1973.
  • P. Deligne, “Le symbole modéré”, Inst. Hautes Études Sci. Publ. Math. 73 (1991), 147–181.
  • V. Drinfeld, “Infinite-dimensional vector bundles in algebraic geometry: an introduction”, pp. 263–304 in The unity of mathematics (Cambridge, MA, 2003), edited by P. Etingof et al., Progr. Math. 244, Birkhäuser, Boston, MA, 2006.
  • E. Frenkel and X. Zhu, “Gerbal representations of double loop groups”, preprint, 2008.
  • A. Huber, “On the Parshin–Beĭ linson adèles for schemes”, Abh. Math. Sem. Univ. Hamburg 61 (1991), 249–273.
  • M. Kapranov, “Semiinfinite symmetric powers”, 2001.
  • M. M. Kapranov and V. A. Voevodsky, “$2$-categories and Zamolodchikov tetrahedra equations”, pp. 177–259 in Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), edited by W. J. Haboush and B. J. Parshall, Proc. Sympos. Pure Math. 56, Amer. Math. Soc., Providence, 1994.
  • K. Kato, “Milnor $K$-theory and the Chow group of zero cycles”, pp. 241–253 in Applications of algebraic $K$-theory to algebraic geometry and number theory (Boulder, CO, 1983), edited by S. J. Bloch et al., Contemp. Math. 55, Amer. Math. Soc., Providence, 1986.
  • D. Osipov, “To the multidimensional tame symbol”, preprint 03-13, Humboldt University, Berlin, 2003, http://edoc.hu-berlin.de/docviews/abstract.php?id=26204. \begingroup\def
  • D. V. Osipov, “Central extensions and reciprocity laws on algebraic surfaces”, Mat. Sb. 196:10 (2005), 111–136. In Russian; translated in Sb. Math. \bf196:10 (2005), 1503-1527. \endgroup
  • D. Osipov, “Adeles on $n$-dimensional schemes and categories $C\sb n$”, Internat. J. Math. 18:3 (2007), 269–279.
  • D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, pp. 131–164 in Surveys in contemporary mathematics, edited by N. Young and Y. Choi, London Math. Soc. Lecture Note Ser. 347, Cambridge Univ. Press, Cambridge, 2008.
  • A. N. Parshin, “Class fields and algebraic $K$-theory”, Uspehi Mat. Nauk 30:1 (181) (1975), 253–254. In Russian.
  • A. N. Parshin, “On the arithmetic of two-dimensional schemes, I: Distributions and residues”, Izv. Akad. Nauk SSSR Ser. Mat. 40:4 (1976), 736–773. In Russian; translated in Math. USSR Izv. 10:4 (1976), 695-729.
  • A. N. Parshin, “Local class field theory”, pp. 143–170 in Algebraic geometry and its applications, Trudy Mat. Inst. Steklov. 165, 1984. In Russian; translated in Proc. Steklov Inst. Math. 1985, Issue 3, 157–185.
  • D. Quillen, “Higher algebraic $K$-theory. I”, pp. 85–147 in Algebraic $K$-theory, I: Higher $K$-theories (Seattle, 1972), edited by H. Bass, Lecture Notes in Math. 341, Springer, Berlin, 1973.
  • J.-P. Serre, Algebraic groups and class fields, Graduate Texts in Mathematics 117, Springer, New York, 1988.
  • J. Tate, “Residues of differentials on curves”, Ann. Sci. École Norm. Sup. $(4)$ 1 (1968), 149–159.
  • X. Zhu, “The 2-group of linear auto-equivalences of an abelian category and its Lie 2-algebra”, preprint, 2009.