Algebra & Number Theory

Equations for Chow and Hilbert quotients

Angela Gibney and Diane Maclagan

Full-text: Open access

Abstract

We give explicit equations for the Chow and Hilbert quotients of a projective scheme X by the action of an algebraic torus T in an auxiliary toric variety. As a consequence we provide geometric invariant theory descriptions of these canonical quotients, and obtain other GIT quotients of X by variation of GIT quotient. We apply these results to find equations for the moduli space M¯0,n of stable genus-zero n-pointed curves as a subvariety of a smooth toric variety defined via tropical methods.

Article information

Source
Algebra Number Theory, Volume 4, Number 7 (2010), 855-885.

Dates
Received: 29 May 2009
Revised: 17 February 2010
Accepted: 5 May 2010
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513729587

Digital Object Identifier
doi:10.2140/ant.2010.4.855

Mathematical Reviews number (MathSciNet)
MR2776876

Zentralblatt MATH identifier
1210.14051

Subjects
Primary: 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17]
Secondary: 14M25: Toric varieties, Newton polyhedra [See also 52B20] 14L24: Geometric invariant theory [See also 13A50] 14H10: Families, moduli (algebraic)

Keywords
Chow quotient Hilbert quotient moduli of curves space of phylogenetic trees

Citation

Gibney, Angela; Maclagan, Diane. Equations for Chow and Hilbert quotients. Algebra Number Theory 4 (2010), no. 7, 855--885. doi:10.2140/ant.2010.4.855. https://projecteuclid.org/euclid.ant/1513729587


Export citation

References

  • D. Bayer and I. Morrison, “Standard bases and geometric invariant theory, I: Initial ideals and state polytopes”, J. Symbolic Comput. 6 (1988), 209–217.
  • A. Białynicki-Birula and A. J. Sommese, “A conjecture about compact quotients by tori”, pp. 59–68 in Complex analytic singularities, edited by T. Suwa and P. Wagreich, Adv. Stud. Pure Math. 8, North-Holland, Amsterdam, 1987.
  • L. J. Billera, P. Filliman, and B. Sturmfels, “Constructions and complexity of secondary polytopes”, Adv. Math. 83:2 (1990), 155–179.
  • L. J. Billera, S. P. Holmes, and K. Vogtmann, “Geometry of the space of phylogenetic trees”, Adv. in Appl. Math. 27:4 (2001), 733–767.
  • P. Buneman, “A note on the metric properties of trees”, J. Combinatorial Theory Ser. B 17 (1974), 48–50.
  • A.-M. Castravet, “The Cox ring of $\overline M\sb {0,6}$”, Trans. Amer. Math. Soc. 361:7 (2009), 3851–3878.
  • D. A. Cox, “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom. 4:1 (1995), 17–50.
  • J. Draisma, “A tropical approach to secant dimensions”, J. Pure Appl. Algebra 212:2 (2008), 349–363.
  • M. Einsiedler, M. Kapranov, and D. Lind, “Non-Archimedean amoebas and tropical varieties”, J. Reine Angew. Math. 601 (2006), 139–157.
  • D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics 150, Springer, New York, 1995.
  • E. M. Feichtner, “Complexes of trees and nested set complexes”, Pacific J. Math. 227:2 (2006), 271–286.
  • E. M. Feichtner and S. Yuzvinsky, “Chow rings of toric varieties defined by atomic lattices”, Invent. Math. 155:3 (2004), 515–536.
  • W. Fulton, Introduction to toric varieties, Ann. Math. Studies 131, Princeton University Press, 1993.
  • A. Gathmann, “Tropical algebraic geometry”, Jahresber. Deutsch. Math.-Verein. 108:1 (2006), 3–32.
  • I. M. Gel'fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994.
  • B. Howard, J. Millson, A. Snowden, and R. Vakil, “The equations for the moduli space of $n$ points on the line”, Duke Math. J. 146:2 (2009), 175–226.
  • Y. Hu, “Topological aspects of Chow quotients”, J. Differential Geom. 69:3 (2005), 399–440.
  • Y. Hu and S. Keel, “Mori dream spaces and GIT”, Michigan Math. J. 48 (2000), 331–348.
  • A. N. Jensen, H. Markwig, and T. Markwig, “An algorithm for lifting points in a tropical variety”, Collect. Math. 59:2 (2008), 129–165.
  • M. M. Kapranov, “Chow quotients of Grassmannians, I”, pp. 29–110 in I. M. Gel'fand Seminar, Adv. Soviet Math. 16, Amer. Math. Soc., Providence, RI, 1993.
  • M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky, “Chow polytopes and general resultants”, Duke Math. J. 67:1 (1992), 189–218.
  • S. Keel, “Intersection theory of moduli space of stable $n$-pointed curves of genus zero”, Trans. Amer. Math. Soc. 330:2 (1992), 545–574.
  • S. Keel and J. Tevelev, “Geometry of Chow quotients of Grassmannians”, Duke Math. J. 134:2 (2006), 259–311.
  • S. Keel and J. Tevelev, “Equations for $\overline M\sb {0,n}$”, Internat. J. Math. 20:9 (2009), 1159–1184.
  • J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik (3) 32, Springer, Berlin, 1996.
  • D. Maclagan and R. R. Thomas, “Computational algebra and combinatorics of toric ideals”, pp. 1–106 in Commutative algebra and combinatorics (Allahabad, 2003), vol. 1, edited by R. V. Gurjar et al., Ramanujan Math. Soc. Lect. Notes Ser. 4, Ramanujan Math. Soc., Mysore, 2007.
  • G. Mikhalkin, “Tropical geometry and its applications”, pp. 827–852 in International Congress of Mathematicians, vol. II, edited by J. L. V. Marta Sanz-Solé, Javier Soria and J. Verdera, Eur. Math. Soc., Zürich, 2006.
  • T. Mora and L. Robbiano, “The Gröbner fan of an ideal”, J. Symbolic Comput. 6:2-3 (1988), 183–208.
  • M. Mustaţă, “Vanishing theorems on toric varieties”, Tohoku Math. J. $(2)$ 54:3 (2002), 451–470.
  • S. Payne, “Fibers of tropicalization”, Math. Z. 262 (2009), 301–311.
  • A. Robinson and S. Whitehouse, “The tree representation of $\Sigma\sb {n+1}$”, J. Pure Appl. Algebra 111:1-3 (1996), 245–253.
  • D. E. Speyer, Tropical geometry, Ph.D. thesis, University of California, Berkeley, 2005, http://tinyurl.com/29947uz.
  • D. Speyer and B. Sturmfels, “The tropical Grassmannian”, Adv. Geom. 4:3 (2004), 389–411.
  • B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series 8, American Mathematical Society, Providence, RI, 1996.
  • J. Tevelev, “Compactifications of subvarieties of tori”, Amer. J. Math. 129:4 (2007), 1087–1104.
  • P. Vermeire, “A counterexample to Fulton's conjecture on $\mskip4mu\overline {\mskip-4mu M\mskip-1mu}\mskip1mu\sb {0,n}$”, J. Algebra 248:2 (2002), 780–784.
  • K. Vogtmann, “Local structure of some ${\rm Out}(F\sb n)$-complexes”, Proc. Edinburgh Math. Soc. $(2)$ 33:3 (1990), 367–379.
  • G. M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics 152, Springer, New York, 1995.