Algebra & Number Theory

A uniform classification of discrete series representations of affine Hecke algebras

Dan Ciubotaru and Eric Opdam

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We give a new and independent parametrization of the set of discrete series characters of an affine Hecke algebra v, in terms of a canonically defined basis gm of a certain lattice of virtual elliptic characters of the underlying (extended) affine Weyl group. This classification applies to all semisimple affine Hecke algebras , and to all v Q, where Q denotes the vector group of positive real (possibly unequal) Hecke parameters for . By analytic Dirac induction we define for each b gm a continuous (in the sense of Opdam and Solleveld (2010)) family Qbreg := Qb Qbsing v IndD(b;v), such that ϵ(b;v)IndD(b;v) (for some ϵ(b;v) {±1}) is an irreducible discrete series character of v. Here Qbsing Q is a finite union of hyperplanes in Q.

In the nonsimply laced cases we show that the families of virtual discrete series characters IndD(b;v) are piecewise rational in the parameters v. Remarkably, the formal degree of IndD(b;v) in such piecewise rational family turns out to be rational. This implies that for each b gm there exists a universal rational constant db determining the formal degree in the family of discrete series characters ϵ(b;v)IndD(b;v). We will compute the canonical constants db, and the signs ϵ(b;v). For certain geometric parameters we will provide the comparison with the Kazhdan–Lusztig–Langlands classification.

Article information

Source
Algebra Number Theory, Volume 11, Number 5 (2017), 1089-1134.

Dates
Received: 21 April 2016
Revised: 6 September 2016
Accepted: 4 December 2016
First available in Project Euclid: 12 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513090723

Digital Object Identifier
doi:10.2140/ant.2017.11.1089

Mathematical Reviews number (MathSciNet)
MR3671432

Zentralblatt MATH identifier
1373.20003

Subjects
Primary: 20C08: Hecke algebras and their representations
Secondary: 22D25: $C^*$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx] 43A30: Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.

Keywords
Affine Hecke algebra graded affine Hecke algebra Dirac operator discrete series representation

Citation

Ciubotaru, Dan; Opdam, Eric. A uniform classification of discrete series representations of affine Hecke algebras. Algebra Number Theory 11 (2017), no. 5, 1089--1134. doi:10.2140/ant.2017.11.1089. https://projecteuclid.org/euclid.ant/1513090723


Export citation

References

  • M. Artin, “Noncommutative rings”, course notes, University of California, Berkeley, 1999.
  • A.-M. Aubert, P. Baum, R. Plymen, and M. Solleveld, “The principal series of $p$-adic groups with disconnected center”, Proc. London Math. Soc. 114:5 (2017), 798–854.
  • D. Barbasch, D. Ciubotaru, and P. E. Trapa, “Dirac cohomology for graded affine Hecke algebras”, Acta Math. 209:2 (2012), 197–227.
  • R. W. Carter, Finite groups of Lie type: conjugacy classes and complex characters, Wiley, New York, 1985.
  • N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhäuser, Boston, 1997.
  • D. Ciubotaru, “Spin representations of Weyl groups and the Springer correspondence”, J. Reine Angew. Math. 671 (2012), 199–222.
  • D. Ciubotaru and X. He, “Cocenters and representations of affine Hecke algebras”, preprint, 2014. To appear in J. Eur. Math. Soc.
  • D. Ciubotaru and X. He, “Green polynomials of Weyl groups, elliptic pairings, and the extended Dirac index”, Adv. Math. 283 (2015), 1–50.
  • D. Ciubotaru and S. Kato, “Tempered modules in exotic Deligne–Langlands correspondence”, Adv. Math. 226:2 (2011), 1538–1590.
  • D. Ciubotaru and E. Opdam, “Formal degrees of unipotent discrete series representations and the exotic Fourier transform”, Proc. Lond. Math. Soc. $(3)$ 110:3 (2015), 615–646.
  • D. M. Ciubotaru and P. E. Trapa, “Characters of Springer representations on elliptic conjugacy classes”, Duke Math. J. 162:2 (2013), 201–223.
  • D. Ciubotaru, M. Kato, and S. Kato, “On characters and formal degrees of discrete series of affine Hecke algebras of classical types”, Invent. Math. 187:3 (2012), 589–635.
  • D. Ciubotaru, E. M. Opdam, and P. E. Trapa, “Algebraic and analytic Dirac induction for graded affine Hecke algebras”, J. Inst. Math. Jussieu 13:3 (2014), 447–486.
  • P. Delorme and E. M. Opdam, “The Schwartz algebra of an affine Hecke algebra”, J. Reine Angew. Math. 625 (2008), 59–114.
  • P. Delorme and E. Opdam, “Analytic $R$-groups of affine Hecke algebras”, J. Reine Angew. Math. 658 (2011), 133–172.
  • M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Mathematical Society Monographs $($N.S.$)$ 21, Oxford University Press, New York, 2000.
  • G. J. Heckman and E. M. Opdam, “Yang's system of particles and Hecke algebras”, Ann. of Math. $(2)$ 145:1 (1997), 139–173.
  • S. Kato, “An exotic Deligne–Langlands correspondence for symplectic groups”, Duke Math. J. 148:2 (2009), 305–371.
  • D. Kazhdan and G. Lusztig, “Proof of the Deligne–Langlands conjecture for Hecke algebras”, Invent. Math. 87:1 (1987), 153–215.
  • J. Kollár and K. Nowak, “Continuous rational functions on real and $p$-adic varieties”, Math. Z. 279:1-2 (2015), 85–97.
  • G. Lusztig, “Affine Hecke algebras and their graded version”, J. Amer. Math. Soc. 2:3 (1989), 599–635.
  • G. Lusztig, “Cells in affine Weyl groups, IV”, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36:2 (1989), 297–328.
  • G. Lusztig, “Cuspidal local systems and graded Hecke algebras, II”, pp. 217–275 in Representations of groups (Banff, AB, 1994), edited by B. N. Allison and G. H. Cliff, CMS Conf. Proc. 16, Amer. Math. Soc., Providence, RI, 1995.
  • G. Lusztig, “Cuspidal local systems and graded Hecke algebras, III”, Represent. Theory 6 (2002), 202–242.
  • E. M. Opdam, “A remark on the irreducible characters and fake degrees of finite real reflection groups”, Invent. Math. 120:3 (1995), 447–454.
  • E. M. Opdam, “On the spectral decomposition of affine Hecke algebras”, J. Inst. Math. Jussieu 3:4 (2004), 531–648.
  • E. Opdam, “The central support of the Plancherel measure of an affine Hecke algebra”, Mosc. Math. J. 7:4 (2007), 723–741.
  • E. Opdam, “Spectral transfer morphisms for unipotent affine Hecke algebras”, Selecta Math. $($N.S.$)$ 22:4 (2016), 2143–2207.
  • E. Opdam and M. Solleveld, “Homological algebra for affine Hecke algebras”, Adv. Math. 220:5 (2009), 1549–1601.
  • E. Opdam and M. Solleveld, “Discrete series characters for affine Hecke algebras and their formal degrees”, Acta Math. 205:1 (2010), 105–187.
  • P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften 300, Springer, 1992.
  • A. Ram and J. Ramagge, “Affine Hecke algebras, cyclotomic Hecke algebras, and Clifford theory”, pp. 428–466 in A tribute to C. S. Seshadri: a collection of articles on geometry and representation theory (Chennai, 2002), edited by V. Lakshmibai et al., Trends Math., Birkhäuser, Basel, 2003.
  • M. Reeder, “On the Iwahori-spherical discrete series for $p$-adic Chevalley groups; formal degrees and $L$-packets”, Ann. Sci. École Norm. Sup. $(4)$ 27:4 (1994), 463–491.
  • M. Reeder, “Formal degrees and $L$-packets of unipotent discrete series representations of exceptional $p$-adic groups”, J. Reine Angew. Math. 520 (2000), 37–93.
  • M. Reeder, “Euler–Poincaré pairings and elliptic representations of Weyl groups and $p$-adic groups”, Compositio Math. 129:2 (2001), 149–181.
  • M. Reeder, “Isogenies of Hecke algebras and a Langlands correspondence for ramified principal series representations”, Represent. Theory 6 (2002), 101–126.
  • V. V. Schechtman and A. N. Varchenko, “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math. 106:1 (1991), 139–194.
  • K. Slooten, “Induced discrete series representations for Hecke algebras of types $\smash{B^{\rm aff}_n}$ and $\smash{C^{\rm aff}_n}$”, Int. Math. Res. Not. 2008:10 (2008), art. id. rnn023, 41 pp.
  • M. Solleveld, “On the classification of irreducible representations of affine Hecke algebras with unequal parameters”, Represent. Theory 16 (2012), 1–87.
  • J.-L. Waldspurger, “Représentations de réduction unipotente pour ${\rm SO}(2n+1)$: quelques conséquences d'un article de Lusztig”, pp. 803–910 in Contributions to automorphic forms, geometry, and number theory, edited by H. Hida et al., Johns Hopkins Univ. Press, Baltimore, 2004.