Algebra & Number Theory

A tropical approach to nonarchimedean Arakelov geometry

Walter Gubler and Klaus Künnemann

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Chambert-Loir and Ducros have recently introduced a theory of real valued differential forms and currents on Berkovich spaces. In analogy to the theory of forms with logarithmic singularities, we enlarge the space of differential forms by so called δ-forms on the nonarchimedean analytification of an algebraic variety. This extension is based on an intersection theory for tropical cycles with smooth weights. We prove a generalization of the Poincaré–Lelong formula which allows us to represent the first Chern current of a formally metrized line bundle by a δ-form. We introduce the associated Monge–Ampère measure μ as a wedge-power of this first Chern δ-form and we show that μ is equal to the corresponding Chambert-Loir measure. The -product of Green currents is a crucial ingredient in the construction of the arithmetic intersection product. Using the formalism of δ-forms, we obtain a nonarchimedean analogue at least in the case of divisors. We use it to compute nonarchimedean local heights of proper varieties.

Article information

Source
Algebra Number Theory, Volume 11, Number 1 (2017), 77-180.

Dates
Received: 19 October 2015
Revised: 13 September 2016
Accepted: 13 November 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1510842716

Digital Object Identifier
doi:10.2140/ant.2017.11.77

Mathematical Reviews number (MathSciNet)
MR3602767

Zentralblatt MATH identifier
06679113

Subjects
Primary: 14G40: Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30]
Secondary: 14G22: Rigid analytic geometry 14T05: Tropical geometry [See also 12K10, 14M25, 14N10, 52B20] 32P05: Non-Archimedean analysis (should also be assigned at least one other classification number from Section 32 describing the type of problem)

Keywords
differential forms on Berkovich spaces Chambert-Loir measures tropical intersection theory nonarchimedean Arakelov theory

Citation

Gubler, Walter; Künnemann, Klaus. A tropical approach to nonarchimedean Arakelov geometry. Algebra Number Theory 11 (2017), no. 1, 77--180. doi:10.2140/ant.2017.11.77. https://projecteuclid.org/euclid.ant/1510842716


Export citation

References

  • L. Allermann, “Tropical intersection products on smooth varieties”, J. Eur. Math. Soc. $($JEMS$@)$ 14:1 (2012), 107–126.
  • L. Allermann and J. Rau, “First steps in tropical intersection theory”, Math. Z. 264:3 (2010), 633–670.
  • M. Baker, S. Payne, and J. Rabinoff, “On the structure of non-Archimedean analytic curves”, pp. 93–121 in Tropical and non-Archimedean geometry, edited by O. Amini et al., Contemp. Math. 605, Amer. Math. Soc., Providence, RI, 2013.
  • M. Baker, S. Payne, and J. Rabinoff, “Nonarchimedean geometry, tropicalization, and metrics on curves”, Algebr. Geom. 3:1 (2016), 63–105.
  • V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs 33, Amer. Math. Soc., Providence, RI, 1990.
  • V. G. Berkovich, “Étale cohomology for non-Archimedean analytic spaces”, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 5–161.
  • V. G. Berkovich, “Smooth $p$-adic analytic spaces are locally contractible”, Invent. Math. 137:1 (1999), 1–84.
  • S. Bosch, Lectures on formal and rigid geometry, Lecture Notes in Mathematics 2105, Springer, Cham, 2014.
  • S. Bosch and W. Lütkebohmert, “Formal and rigid geometry, I: Rigid spaces”, Math. Ann. 295:2 (1993), 291–317.
  • A. Chambert-Loir, “Mesures et équidistribution sur les espaces de Berkovich”, J. Reine Angew. Math. 595 (2006), 215–235.
  • A. Chambert-Loir and A. Ducros, “Formes différentielles réelles et courants sur les espaces de Berkovich”, preprint, 2012, hook \posturlhook.
  • C. Christensen, Erste Chernform und Chambert-Loir Maße auf dem Quadrat einer Tate-Kurve, Ph.D. thesis, Universität Tübingen, 2013, hook http://hdl.handle.net/10900/49886 \posturlhook.
  • D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics 124, Amer. Math. Soc., Providence, RI, 2011.
  • J. Dieudonné, Treatise on analysis, III, Pure and Applied Mathematics 10-III, Academic Press, New York, 1972.
  • A. Ducros, “Espaces de Berkovich, polytopes, squelettes et théorie des modèles”, Confluentes Math. 4:4 (2012), 1250007, 57.
  • A. Grothendieck, “Eléments de géométrie algébrique, III: Étude cohomologique des faisceaux cohérents, I”, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 5–167.
  • A. Esterov, “Tropical varieties with polynomial weights and corner loci of piecewise polynomials”, Mosc. Math. J. 12:1 (2012), 55–76, 215.
  • G. François, “Cocycles on tropical varieties via piecewise polynomials”, Proc. Amer. Math. Soc. 141:2 (2013), 481–497.
  • G. François and J. Rau, “The diagonal of tropical matroid varieties and cycle intersections”, Collect. Math. 64:2 (2013), 185–210.
  • K. Fujiwara and F. Kato, “Foundations of rigid geometry, I”, preprint, 2014, hook \posturlhook.
  • W. Fulton, Intersection theory, Ergebnisse der Mathematik $($3$)$ 2, Springer, Berlin, 1984.
  • W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton University Press, 1993.
  • W. Fulton and B. Sturmfels, “Intersection theory on toric varieties”, Topology 36:2 (1997), 335–353.
  • A. Grothendieck, “Technique de descente et théorèmes d'existence en géométrie algébrique, VI: Les schémas de Picard: propriétés générales”, in Séminaire Bourbaki $1961/62$, $($Exposé 236$@)$, W. A. Benjamin, Amsterdam, 1966. Reprinted as pp. 297–307 in Séminaire Bourbaki 7, Soc. Math. France, Paris, 1995.
  • W. Gubler, “Local heights of subvarieties over non-Archimedean fields”, J. Reine Angew. Math. 498 (1998), 61–113.
  • W. Gubler, “Local and canonical heights of subvarieties”, Ann. Sc. Norm. Super. Pisa Cl. Sci. $(5)$ 2:4 (2003), 711–760.
  • W. Gubler, “Tropical varieties for non-Archimedean analytic spaces”, Invent. Math. 169:2 (2007), 321–376.
  • W. Gubler, “Non-Archimedean canonical measures on abelian varieties”, Compos. Math. 146:3 (2010), 683–730.
  • W. Gubler, “A guide to tropicalizations”, pp. 125–189 in Algebraic and combinatorial aspects of tropical geometry, edited by E. Brugallé et al., Contemp. Math. 589, Amer. Math. Soc., Providence, RI, 2013.
  • W. Gubler, “Forms and Currents on the Analytification of an Algebraic Variety (After Chambert-Loir and Ducros)”, pp. 1–30 in Nonarchimedean and Tropical Geometry, edited by M. Baker and S. Payne, Springer, Cham, 2016.
  • W. Gubler, J. Rabinoff, and A. Werner, “Skeletons and tropicalizations”, Adv. Math. 294 (2016), 150–215.
  • R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, New York, 1977.
  • E. Katz, “Tropical intersection theory from toric varieties”, Collect. Math. 63:1 (2012), 29–44.
  • G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings, I, Lecture Notes in Mathematics 339, Springer, Berlin, 1973.
  • A. Lagerberg, “Super currents and tropical geometry”, Math. Z. 270:3-4 (2012), 1011–1050.
  • Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6, Oxford University Press, 2002.
  • V. Maillot, Géométrie d'Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. Fr. (N.S.) 80, Société Mathématique de France, Paris, 2000.
  • G. Mikhalkin, “Tropical geometry and its applications”, pp. 827–852 in International Congress of Mathematicians, II, edited by M. Sanz-Solé et al., Eur. Math. Soc., Zürich, 2006.
  • J. Neukirch, Algebraic number theory, Grundlehren der Math. Wissenschaften 322, Springer, Berlin, 1999.
  • T. Oda, Convex bodies and algebraic geometry: an introduction to the theory of toric varieties, Ergebnisse der Mathematik $($3$)$ 15, Springer, Berlin, 1988.
  • J. Rau, Tropical intersection theory and gravitational descendants, Ph.D. thesis, Technische Universität Kaiserslautern, 2009, hook https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2122 \posturlhook.
  • B. Sturmfels and J. Tevelev, “Elimination theory for tropical varieties”, Math. Res. Lett. 15:3 (2008), 543–562.
  • M. Temkin, “Relative Riemann–Zariski spaces”, Israel J. Math. 185 (2011), 1–42.