Algebra & Number Theory

The Voronoi formula and double Dirichlet series

Eren Kıral and Fan Zhou

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove a Voronoi formula for coefficients of a large class of L-functions including Maass cusp forms, Rankin–Selberg convolutions, and certain noncuspidal forms. Our proof is based on the functional equations of L-functions twisted by Dirichlet characters and does not directly depend on automorphy. Hence it has wider application than previous proofs. The key ingredient is the construction of a double Dirichlet series.

Article information

Source
Algebra Number Theory, Volume 10, Number 10 (2016), 2267-2286.

Dates
Received: 8 May 2016
Revised: 19 July 2016
Accepted: 23 September 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1510842637

Digital Object Identifier
doi:10.2140/ant.2016.10.2267

Mathematical Reviews number (MathSciNet)
MR3582019

Zentralblatt MATH identifier
06664750

Subjects
Primary: 11F30: Fourier coefficients of automorphic forms
Secondary: 11F68: Dirichlet series in several complex variables associated to automorphic forms; Weyl group multiple Dirichlet series 11L05: Gauss and Kloosterman sums; generalizations

Keywords
Voronoi formula automorphic form Maass form multiple Dirichlet series Gauss sum Kloosterman sum Rankin–Selberg $L$-function

Citation

Kıral, Eren; Zhou, Fan. The Voronoi formula and double Dirichlet series. Algebra Number Theory 10 (2016), no. 10, 2267--2286. doi:10.2140/ant.2016.10.2267. https://projecteuclid.org/euclid.ant/1510842637


Export citation

References

  • T. M. Apostol, Introduction to analytic number theory, Springer, New York, 1976.
  • V. Blomer, “Subconvexity for twisted $L$-functions on ${\rm GL}(3)$”, Amer. J. Math. 134:5 (2012), 1385–1421.
  • V. Blomer, R. Khan, and M. Young, “Distribution of mass of holomorphic cusp forms”, Duke Math. J. 162:14 (2013), 2609–2644.
  • D. Bump, Automorphic forms on ${\rm GL}(3,{\mathbb R})$, Lecture Notes in Mathematics 1083, Springer, Berlin, 1984.
  • J. Buttcane and R. Khan, “$L\sp 4$-norms of Hecke newforms of large level”, Math. Ann. 362:3-4 (2015), 699–715.
  • W. Duke and H. Iwaniec, “Estimates for coefficients of $L$-functions, I”, pp. 43–47 in Automorphic forms and analytic number theory (Montreal, 1989), edited by R. Murty, Univ. Montréal, 1990.
  • R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Mathematics 260, Springer, Berlin, 1972.
  • D. Goldfeld, Automorphic forms and $L$-functions for the group ${\rm GL}(n,\mathbb R)$, Cambridge Studies in Advanced Mathematics 99, Cambridge University Press, 2006.
  • D. Goldfeld and X. Li, “Voronoi formulas on ${\rm GL}(n)$”, Int. Math. Res. Not. 2006 (2006), art. id 86295.
  • D. Goldfeld and X. Li, “The Voronoi formula for ${\rm GL}(n,\mathbb R)$”, Int. Math. Res. Not. 2008:2 (2008), art. id rnm144.
  • A. Good, “Cusp forms and eigenfunctions of the Laplacian”, Math. Ann. 255:4 (1981), 523–548.
  • A. Ichino and N. Templier, “On the Voronoĭ formula for ${\rm GL}(n)$”, Amer. J. Math. 135:1 (2013), 65–101.
  • H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, “Rankin–Selberg convolutions”, Amer. J. Math. 105:2 (1983), 367–464.
  • R. Khan, “Simultaneous non-vanishing of ${\rm GL}(3)\times {\rm GL}(2)$ and ${\rm GL}(2)$ $L$-functions”, Math. Proc. Cambridge Philos. Soc. 152:3 (2012), 535–553.
  • E. Kowalski and G. Ricotta, “Fourier coefficients of ${\rm GL}(N)$ automorphic forms in arithmetic progressions”, Geom. Funct. Anal. 24:4 (2014), 1229–1297.
  • X. Li, “The central value of the Rankin–Selberg $L$-functions”, Geom. Funct. Anal. 18:5 (2009), 1660–1695.
  • X. Li, “Bounds for ${\rm GL}(3)\times {\rm GL}(2)$ $L$-functions and ${\rm GL}(3)$ $L$-functions”, Ann. of Math. $(2)$ 173:1 (2011), 301–336.
  • X. Li and M. P. Young, “The $L\sp 2$ restriction norm of a ${\rm GL}\sb 3$ Maass form”, Compos. Math. 148:3 (2012), 675–717.
  • S. D. Miller, “Cancellation in additively twisted sums on ${\rm GL}(n)$”, Amer. J. Math. 128:3 (2006), 699–729.
  • S. D. Miller and W. Schmid, “Summation formulas, from Poisson and Voronoi to the present”, pp. 419–440 in Noncommutative harmonic analysis, edited by P. Delorme and M. Vergne, Progress in Mathematics 220, Birkhäuser, Boston, 2004.
  • S. D. Miller and W. Schmid, “Automorphic distributions, $L$-functions, and Voronoi summation for ${\rm GL}(3)$”, Ann. of Math. $(2)$ 164:2 (2006), 423–488.
  • S. D. Miller and W. Schmid, “A general Voronoi summation formula for ${\rm GL}(n,\mathbb Z)$”, pp. 173–224 in Geometry and analysis, No. 2, edited by L. Ji, Advanced Lectures in Mathematics 18, Int. Press, Somerville, MA, 2011.
  • T. Miyake, Modular forms, Springer, Berlin, 1989.
  • H. L. Montgomery and R. C. Vaughan, Multiplicative number theory, I: Classical theory, Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, 2007.
  • R. Munshi, “Shifted convolution sums for ${\rm GL}(3)\times{\rm GL}(2)$”, Duke Math. J. 162:13 (2013), 2345–2362.
  • R. Munshi, “The circle method and bounds for $L$-functions, IV: Subconvexity for twists of $\rm GL(3)$ $L$-functions”, Ann. of Math. $(2)$ 182:2 (2015), 617–672.
  • G. Shimura, “On the holomorphy of certain Dirichlet series”, Proc. London Math. Soc. $(3)$ 31:1 (1975), 79–98.
  • F. Zhou, “Weighted Sato–Tate vertical distribution of the Satake parameter of Maass forms on ${\rm PGL}(N)$”, Ramanujan J. 35:3 (2014), 405–425.
  • F. Zhou, “Voronoi summation formulae on ${\rm GL}(n)$”, J. Number Theory 162 (2016), 483–495.