Algebra & Number Theory

Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields

Jan Nekovář and Wiesława Nizioł

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We show that the logarithmic version of the syntomic cohomology of Fontaine and Messing for semistable varieties over p-adic rings extends uniquely to a cohomology theory for varieties over p-adic fields that satisfies h-descent. This new cohomology — syntomic cohomology — is a Bloch–Ogus cohomology theory, admits a period map to étale cohomology, and has a syntomic descent spectral sequence (from an algebraic closure of the given field to the field itself) that is compatible with the Hochschild–Serre spectral sequence on the étale side and is related to the Bloch–Kato exponential map. In relative dimension zero we recover the potentially semistable Selmer groups and, as an application, we prove that Soulé’s étale regulators land in the potentially semistable Selmer groups.

Our construction of syntomic cohomology is based on new ideas and techniques developed by Beilinson and Bhatt in their recent work on p-adic comparison theorems.

Article information

Source
Algebra Number Theory, Volume 10, Number 8 (2016), 1695-1790.

Dates
Received: 26 February 2016
Accepted: 5 July 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1510842587

Digital Object Identifier
doi:10.2140/ant.2016.10.1695

Mathematical Reviews number (MathSciNet)
MR3556797

Zentralblatt MATH identifier
1375.14081

Subjects
Primary: 14F30: $p$-adic cohomology, crystalline cohomology
Secondary: 11G25: Varieties over finite and local fields [See also 14G15, 14G20]

Keywords
syntomic cohomology regulators

Citation

Nekovář, Jan; Nizioł, Wiesława. Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields. Algebra Number Theory 10 (2016), no. 8, 1695--1790. doi:10.2140/ant.2016.10.1695. https://projecteuclid.org/euclid.ant/1510842587


Export citation

References

  • K. Bannai, “Syntomic cohomology as a $p$-adic absolute Hodge cohomology”, Math. Z. 242:3 (2002), 443–480.
  • A. A. Beilinson, “Notes on absolute Hodge cohomology”, pp. 35–68 in Applications of algebraic $K$-theory to algebraic geometry and number theory, I (Boulder, CO, 1983), edited by S. J. Bloch et al., Contemp. Math. 55, Amer. Math. Soc., Providence, RI, 1986.
  • A. Beilinson, “$p$-adic periods and derived de Rham cohomology”, J. Amer. Math. Soc. 25:3 (2012), 715–738.
  • A. Beilinson, “On the crystalline period map”, extended version of article published in Camb. J. Math. 1:1 (2013), 1–51, 2013.
  • L. Berger, Représentations $p$-adiques et équations différentielles, Ph.D. thesis, Univerité Pierre et Marie Curie, 2001, hook http://perso.ens-lyon.fr/laurent.berger/autrestextes/these.pdf \posturlhook.
  • L. Berger, “Représentations $p$-adiques et équations différentielles”, Invent. Math. 148:2 (2002), 219–284.
  • M. Bertolini, H. Darmon, and V. Rotger, “Beilinson–Flach elements and Euler systems, II: The Birch–Swinnerton-Dyer conjecture for Hasse–Weil–Artin $L$-series”, J. Algebraic Geom. 24:3 (2015), 569–604.
  • A. Besser, “Syntomic regulators and $p$-adic integration, I: Rigid syntomic regulators”, Israel J. Math. 120:2 (2000), 291–334.
  • A. Besser, P. Buckingham, R. de Jeu, and X.-F. Roblot, “On the $p$-adic Beilinson conjecture for number fields”, Pure Appl. Math. Q. 5:1 (2009), 375–434.
  • A. Besser, D. Loeffler, and S. L. Zerbes, “Finite polynomial cohomology for general varieties”, Ann. Math. Qué. 40:1 (2016), 203–220.
  • B. Bhatt, “$p$-adic derived de Rham cohomology”, preprint, 2012.
  • B. Bhatt and P. Scholze, “The pro-étale topology for schemes”, pp. 99–201 in De la géométrie algébrique aux formes automorphes, I, edited by J. B. Bost et al., Astérisque 369, Société Mathématique de France, Paris, 2015.
  • S. Bloch and K. Kato, “$L$-functions and Tamagawa numbers of motives”, pp. 333–400 in The Grothendieck Festschrift, I, Progr. Math. 86, Birkhäuser, Boston, 1990.
  • S. Bloch and A. Ogus, “Gersten's conjecture and the homology of schemes”, Ann. Sci. École Norm. Sup. $(4)$ 7 (1974), 181–201.
  • F. Cherbonnier and P. Colmez, “Théorie d'Iwasawa des représentations $p$-adiques d'un corps local”, J. Amer. Math. Soc. 12:1 (1999), 241–268.
  • D.-C. Cisinski and F. Déglise, “Triangulated categories of mixed motives”, preprint, 2009.
  • P. Colmez, “Théorie d'Iwasawa des représentations de de Rham d'un corps local”, Ann. of Math. $(2)$ 148:2 (1998), 485–571.
  • P. Colmez, “Espaces de Banach de dimension finie”, J. Inst. Math. Jussieu 1:3 (2002), 331–439.
  • P. Colmez and J.-M. Fontaine, “Construction des représentations $p$-adiques semi-stables”, Invent. Math. 140:1 (2000), 1–43.
  • P. Colmez and W. Niziol, “Syntomic complexes and p-adic nearby cycles”, preprint, 2015.
  • H. Darmon and V. Rotger, “Diagonal cycles and Euler systems, II: The Birch and Swinnerton-Dyer conjecture for Hasse–Weil–Artin $L$-functions”, J. Amer. Math. Soc. (online publication June 2016).
  • F. Déglise, “Around the Gysin triangle, II”, Doc. Math. 13 (2008), 613–675.
  • F. Déglise and N. Mazzari, “The rigid syntomic ring spectrum”, J. Inst. Math. Jussieu 14:4 (2015), 753–799.
  • F. Déglise and W. Nizioł, “On $p$-adic absolute Hodge cohomology and syntomic coefficients, I”, preprint, 2015.
  • P. Deligne, “Théorie de Hodge, III”, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77.
  • L. Fargues, “Quelques résultats et conjectures concernant la courbe”, pp. 325–374 in De la géométrie algébrique aux formes automorphes, I, edited by J. B. Bost et al., Astérisque 369, Société Mathématique de France, Paris, 2015.
  • J.-M. Fontaine, “Représentations $p$-adiques des corps locaux, I”, pp. 249–309 in The Grothendieck Festschrift, II, edited by P. Cartier et al., Progr. Math. 87, Birkhäuser, Boston, 1990.
  • J.-M. Fontaine, “Le corps des périodes $p$-adiques”, pp. 59–111 in Périodes $p$-adiques (Bures-sur-Yvette, 1988), Astérisque 223, Société Mathématique de France, 1994.
  • J.-M. Fontaine, “Représentations $l$-adiques potentiellement semi-stables”, pp. 321–347 in Périodes $p$-adiques (Bures-sur-Yvette, 1988), Astérisque 223, Société Mathématique de France, Paris, 1994.
  • J.-M. Fontaine, “Représentations $p$-adiques semi-stables”, pp. 113–184 in Périodes $p$-adiques (Bures-sur-Yvette, 1988), Astérisque 223, Société Mathématique de France, Paris, 1994.
  • J.-M. Fontaine and W. Messing, “$p$-adic periods and $p$-adic étale cohomology”, pp. 179–207 in Current trends in arithmetical algebraic geometry (Arcata, CA, 1985), Contemp. Math. 67, Amer. Math. Soc., Providence, RI, 1987.
  • J.-M. Fontaine and B. Perrin-Riou, “Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions $L$”, pp. 599–706 in Motives (Seattle, WA, 1991), vol. 1, edited by U. Jannsen et al., Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence, RI, 1994.
  • E. M. Friedlander, Étale homotopy of simplicial schemes, Annals of Mathematics Studies 104, Princeton University Press, 1982.
  • S. I. Gelfand and Y. I. Manin, Methods of homological algebra, 2nd ed., Springer, Berlin, 2003.
  • H. Gillet, “Riemann–Roch theorems for higher algebraic $K$-theory”, Adv. in Math. 40:3 (1981), 203–289.
  • M. Groth, “A short course on $\infty$-categories”, preprint, 2010.
  • V. A. Hinich and V. V. Schechtman, “On homotopy limit of homotopy algebras”, pp. 240–264 in $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math. 1289, Springer, Berlin, 1987.
  • O. Hyodo and K. Kato, “Semi-stable reduction and crystalline cohomology with logarithmic poles”, pp. 221–268 in Périodes $p$-adiques (Bures-sur-Yvette, 1988), Astérisque 223, Société Mathématique de France, Paris, 1994.
  • L. Illusie, “On the category of sheaves of objects of $\sd(R)$ (after Beilinson and Lurie)”, notes, 2013. Available upon request from luc.illusie@math.u-psud.fr.
  • K. Kato, “Semi-stable reduction and $p$-adic étale cohomology”, pp. 269–293 in Périodes $p$-adiques (Bures-sur-Yvette, 1988), Astérisque 223, Société Mathématique de France, Paris, 1994.
  • K. Kato and W. Messing, “Syntomic cohomology and $p$-adic étale cohomology”, Tohoku Math. J. $(2)$ 44:1 (1992), 1–9.
  • A. Langer, “Local points of motives in semistable reduction”, Compositio Math. 116:2 (1999), 189–217.
  • J. Lurie, Higher topos theory, Annals of Mathematics Studies 170, Princeton University Press, 2009.
  • J. Lurie, “Higher algebra”, preprint, 2016, hook http://www.math.harvard.edu/~lurie/papers/HA.pdf \posturlhook.
  • J. Nekovář, “On $p$-adic height pairings”, pp. 127–202 in Séminaire de Théorie des Nombres (Paris, 1990–91), Progr. Math. 108, Birkhäuser, Boston, 1993.
  • J. Nekovář, “$p$-adic Abel-Jacobi maps and $p$-adic heights”, pp. 367–379 in The arithmetic and geometry of algebraic cycles (Banff, 1998), edited by B. B. Gordon et al., CRM Proc. Lecture Notes 24, Amer. Math. Soc., Providence, RI, 2000.
  • J. Nekovář, “Syntomic cohomology and $p$-adic regulators”, preprint, 1998, hook https://webusers.imj-prg.fr/~jan.nekovar/pu/syn.pdf \posturlhook.
  • W. Niziol, “On the image of $p$-adic regulators”, Invent. Math. 127:2 (1997), 375–400.
  • W. Nizioł, “Cohomology of crystalline smooth sheaves”, Compositio Math. 129:2 (2001), 123–147.
  • W. Nizioł, “Toric singularities: log-blow-ups and global resolutions”, J. Algebraic Geom. 15:1 (2006), 1–29.
  • W. Nizio\l, “Geometric syntomic cohomology and vector bundles on the Fargues–Fontaine curve”, preprint, 2016.
  • W. Niziol, “On syntomic regulators, I: Constructions”, preprint, 2016.
  • M. C. Olsson, “The logarithmic cotangent complex”, Math. Ann. 333:4 (2005), 859–931.
  • A. J. Scholl, “Extensions of motives, higher Chow groups and special values of $L$-functions”, pp. 279–292 in Séminaire de Théorie des Nombres (Paris, 1991–92), edited by S. David, Progr. Math. 116, Birkhäuser, Boston, 1993.
  • P. Scholze, “$p$-adic Hodge theory for rigid-analytic varieties”, Forum Math. Pi 1 (2013), e1, 77.
  • P. Scholze, “Erratum to `$p$-adic Hodge theory for rigid-analytic varieties”', 2016, hook http://www.math.uni-bonn.de/people/scholze/pAdicHodgeErratum.pdf \posturlhook.
  • C. Soulé, “Operations on étale $K$-theory: applications”, pp. 271–303 in Algebraic $K$-theory, I (Oberwolfach, 1980), edited by R. K. Dennis, Lecture Notes in Math. 966, Springer, Berlin, 1982.
  • A. Suslin and V. Voevodsky, “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, pp. 117–189 in The arithmetic and geometry of algebraic cycles (Banff, 1998), NATO Sci. Ser. C Math. Phys. Sci. 548, Kluwer Acad. Publ., Dordrecht, 2000.
  • T. Tsuji, “$p$-adic étale cohomology and crystalline cohomology in the semi-stable reduction case”, Invent. Math. 137:2 (1999), 233–411.
  • V. Voevodsky, “Homology of schemes”, Selecta Math. $($N.S.$)$ 2:1 (1996), 111–153.
  • V. Voevodsky, A. Suslin, and E. M. Friedlander, Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies 143, Princeton University Press, 2000.
  • W. Zheng, “Note on derived $\infty$-categories and monoidal structures”, notes, 2013. Available upon request from wzheng@math.ac.cn.