Algebra & Number Theory

Heegner divisors in generalized Jacobians and traces of singular moduli

Jan Hendrik Bruinier and Yingkun Li

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We prove an abstract modularity result for classes of Heegner divisors in the generalized Jacobian of a modular curve associated to a cuspidal modulus. Extending the Gross–Kohnen–Zagier theorem, we prove that the generating series of these classes is a weakly holomorphic modular form of weight 3 2. Moreover, we show that any harmonic Maass form of weight 0 defines a functional on the generalized Jacobian. Combining these results, we obtain a unifying framework and new proofs for the Gross–Kohnen–Zagier theorem and Zagier’s modularity of traces of singular moduli, together with new geometric interpretations of the traces with nonpositive index.

Article information

Algebra Number Theory, Volume 10, Number 6 (2016), 1277-1300.

Received: 27 August 2015
Revised: 20 April 2016
Accepted: 19 May 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14G35: Modular and Shimura varieties [See also 11F41, 11F46, 11G18]
Secondary: 14H40: Jacobians, Prym varieties [See also 32G20] 11F27: Theta series; Weil representation; theta correspondences 11F30: Fourier coefficients of automorphic forms

Singular moduli generalized Jacobian Heegner point Borcherds product harmonic Maass form


Bruinier, Jan Hendrik; Li, Yingkun. Heegner divisors in generalized Jacobians and traces of singular moduli. Algebra Number Theory 10 (2016), no. 6, 1277--1300. doi:10.2140/ant.2016.10.1277.

Export citation


  • C. Alfes and S. Ehlen, “Twisted traces of CM values of weak Maass forms”, J. Number Theory 133:6 (2013), 1827–1845.
  • R. E. Borcherds, “Automorphic forms with singularities on Grassmannians”, Invent. Math. 132:3 (1998), 491–562.
  • R. E. Borcherds, “The Gross–Kohnen–Zagier theorem in higher dimensions”, Duke Math. J. 97:2 (1999), 219–233.
  • K. Bringmann, K. Ono, and J. Rouse, “Traces of singular moduli on Hilbert modular surfaces”, Int. Math. Res. Not. 2005:47 (2005), 2891–2912.
  • J. H. Bruinier, Borcherds products on O$(2, {l})$ and Chern classes of Heegner divisors, Lecture Notes in Mathematics 1780, Springer, Berlin, 2002.
  • J. H. Bruinier and J. Funke, “On two geometric theta lifts”, Duke Math. J. 125:1 (2004), 45–90.
  • J. H. Bruinier and J. Funke, “Traces of CM values of modular functions”, J. Reine Angew. Math. 594 (2006), 1–33.
  • J. Bruinier and K. Ono, “Heegner divisors, $L$-functions and harmonic weak Maass forms”, Ann. of Math. $(2)$ 172:3 (2010), 2135–2181.
  • W. Duke and P. Jenkins, “Integral traces of singular values of weak Maass forms”, Algebra Number Theory 2:5 (2008), 573–593.
  • M. Eichler and D. Zagier, The theory of Jacobi forms, Progress in Mathematics 55, Birkhäuser, Boston, 1985.
  • J. Funke, “Heegner divisors and nonholomorphic modular forms”, Compositio Math. 133:3 (2002), 289–321.
  • B. H. Gross, “The classes of singular moduli in the generalized Jacobian”, pp. 137–141 in Geometry and arithmetic, edited by C. Faber et al., EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012.
  • B. Gross, W. Kohnen, and D. Zagier, “Heegner points and derivatives of $L$-series, II”, Math. Ann. 278:1-4 (1987), 497–562.
  • C. H. Kim, “Borcherds products associated with certain Thompson series”, Compos. Math. 140:3 (2004), 541–551.
  • S. S. Kudla, “Algebraic cycles on Shimura varieties of orthogonal type”, Duke Math. J. 86:1 (1997), 39–78.
  • S. S. Kudla, “Integrals of Borcherds forms”, Compositio Math. 137:3 (2003), 293–349.
  • S. S. Kudla, “Special cycles and derivatives of Eisenstein series”, pp. 243–270 in Heegner points and Rankin $L$-series, edited by Cambridge, Math. Sci. Res. Inst. Publ. 49, Cambridge Univ. Press, 2004.
  • S. Kudla, “Another product for a Borcherds form”, preprint, 2014.
  • Y. Liu, “Arithmetic theta lifting and $L$-derivatives for unitary groups, II”, Algebra Number Theory 5:7 (2011), 923–1000.
  • W. J. McGraw, “The rationality of vector valued modular forms associated with the Weil representation”, Math. Ann. 326:1 (2003), 105–122.
  • J.-P. Serre, Algebraic groups and class fields, Graduate Texts in Mathematics 117, Springer, New York, 1988.
  • D. Zagier, “Nombres de classes et formes modulaires de poids $3/2$”, C. R. Acad. Sci. Paris Sér. A-B 281:21 (1975), Ai, A883–A886.
  • D. Zagier, “Traces of singular moduli”, pp. 211–244 in Motives, polylogarithms and Hodge theory, I (Irvine, CA, 1998), edited by F. Bogomolov and L. Katzarkov, Int. Press Lect. Ser. 3, Int. Press, Somerville, MA, 2002.