Algebra & Number Theory

Geometry and stability of tautological bundles on Hilbert schemes of points

David Stapleton

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We explore the geometry and establish the slope-stability of tautological vector bundles on Hilbert schemes of points on smooth surfaces. By establishing stability in general, we complete a series of results of Schlickewei and Wandel, who proved the slope-stability of these vector bundles for Hilbert schemes of 2 points or 3 points on K3 or abelian surfaces with Picard group restrictions. In exploring the geometry, we show that every sufficiently positive semistable vector bundle on a smooth curve arises as the restriction of a tautological vector bundle on the Hilbert scheme of points on the projective plane. Moreover, we show that the tautological bundle of the tangent bundle is naturally isomorphic to the log tangent sheaf of the exceptional divisor of the Hilbert–Chow morphism.

Article information

Algebra Number Theory, Volume 10, Number 6 (2016), 1173-1190.

Received: 28 June 2015
Revised: 28 April 2016
Accepted: 28 May 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14J60: Vector bundles on surfaces and higher-dimensional varieties, and their moduli [See also 14D20, 14F05, 32Lxx]

Hilbert schemes of surfaces vector bundles on surfaces Fourier–Mukai transforms slope-stability spectral curves log tangent bundle tautological bundles Hilbert schemes of points


Stapleton, David. Geometry and stability of tautological bundles on Hilbert schemes of points. Algebra Number Theory 10 (2016), no. 6, 1173--1190. doi:10.2140/ant.2016.10.1173.

Export citation


  • V. I. Arnold, “Matrices depending on parameters”, Uspehi Mat. Nauk 26:2(158) (1971), 101–114. In Russian; translated in Russ. Math. Surv. 26:2 (1971), 29–43.
  • T. Aubin, “Équations du type Monge–Ampère sur les variétés kähleriennes compactes”, C. R. Acad. Sci. Paris Sér. A-B 283:3 (1976), Aiii, A119–A121.
  • A. Beauville, M. S. Narasimhan, and S. Ramanan, “Spectral curves and the generalised theta divisor”, J. Reine Angew. Math. 398 (1989), 169–179.
  • D. Bejleri and D. Stapleton, “The tangent space of the punctual Hilbert scheme”, preprint, 2016.
  • R.-O. Buchweitz, W. Ebeling, and H.-C. Graf von Bothmer, “Low-dimensional singularities with free divisors as discriminants”, J. Algebraic Geom. 18:2 (2009), 371–406.
  • M. A. A. de Cataldo and L. Migliorini, “The hard Lefschetz theorem and the topology of semismall maps”, Ann. Sci. École Norm. Sup. $(4)$ 35:5 (2002), 759–772.
  • G. Danila, “Sur la cohomologie d'un fibré tautologique sur le schéma de Hilbert d'une surface”, J. Algebraic Geom. 10:2 (2001), 247–280.
  • S. K. Donaldson, “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles”, Proc. London Math. Soc. $(3)$ 50:1 (1985), 1–26.
  • G. Ellingsrud and S. A. Strømme, “Towards the Chow ring of the Hilbert scheme of ${\mathbb P}\sp 2$”, J. Reine Angew. Math. 441 (1993), 33–44.
  • J. Fogarty, “Algebraic families on an algebraic surface, II: The Picard scheme of the punctual Hilbert scheme”, Amer. J. Math. 95 (1973), 660–687.
  • W. Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 2, Springer, Berlin, 1998.
  • D. Greb and M. Toma, “Compact moduli spaces for slope-semistable sheaves”, preprint, 2013.
  • D. Greb, S. Kebekus, and T. Peternell, “Movable curves and semistable sheaves”, Int. Math. Res. Not. 2016:2 (2016), 536–570.
  • S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan 15, Princeton University Press, Iwanami Shoten, Tokyo, 1987.
  • M. Lehn, “On the cotangent sheaf of Quot-schemes”, Internat. J. Math. 9:4 (1998), 513–522.
  • M. Lehn, “Chern classes of tautological sheaves on Hilbert schemes of points on surfaces”, Invent. Math. 136:1 (1999), 157–207.
  • V. B. Mehta and A. Ramanathan, “Restriction of stable sheaves and representations of the fundamental group”, Invent. Math. 77:1 (1984), 163–172.
  • E. C. Mistretta, Some constructions around stability of vector bundles on projective varieties, Ph.D. thesis, Université Paris Diderot, Paris 7, 2006, hook \posturlhook.
  • H. Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series 18, American Mathematical Society, Providence, RI, 1999.
  • A. Y. Okounkov, “Hilbert schemes and multiple $q$-zeta values”, Funktsional. Anal. i Prilozhen. 48:2 (2014), 79–87.
  • L. Scala, “Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles”, Duke Math. J. 150:2 (2009), 211–267.
  • U. Schlickewei, “Stability of tautological vector bundles on Hilbert squares of surfaces”, Rend. Semin. Mat. Univ. Padova 124 (2010), 127–138.
  • M. Wandel, “Tautological sheaves: Stability, moduli spaces and restrictions to generalised Kummer varieties”, preprint, 2013.
  • M. Wandel, “Stability of tautological bundles on the Hilbert scheme of two points on a surface”, Nagoya Math. J. 214 (2014), 79–94.