Abstract
The behavior of the Frobenius map is investigated for valuation rings of prime characteristic. We show that valuation rings are always F-pure. We introduce a generalization of the notion of strong F-regularity, which we call F-pure regularity, and show that a valuation ring is F-pure regular if and only if it is Noetherian. For valuations on function fields, we show that the Frobenius map is finite if and only if the valuation is Abhyankar; in this case the valuation ring is Frobenius split. For Noetherian valuation rings in function fields, we show that the valuation ring is Frobenius split if and only if Frobenius is finite, or equivalently, if and only if the valuation ring is excellent.
Citation
Rankeya Datta. Karen Smith. "Frobenius and valuation rings." Algebra Number Theory 10 (5) 1057 - 1090, 2016. https://doi.org/10.2140/ant.2016.10.1057
Information