Algebra & Number Theory

Presentation of affine Kac–Moody groups over rings

Daniel Allcock

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Tits has defined Steinberg groups and Kac–Moody groups for any root system and any commutative ring R. We establish a Curtis–Tits-style presentation for the Steinberg group St of any irreducible affine root system with rank 3, for any R. Namely, St is the direct limit of the Steinberg groups coming from the 1- and 2-node subdiagrams of the Dynkin diagram. In fact, we give a completely explicit presentation. Using this we show that St is finitely presented if the rank is 4 and R is finitely generated as a ring, or if the rank is 3 and R is finitely generated as a module over a subring generated by finitely many units. Similar results hold for the corresponding Kac–Moody groups when R is a Dedekind domain of arithmetic type.

Article information

Source
Algebra Number Theory, Volume 10, Number 3 (2016), 533-556.

Dates
Received: 23 September 2014
Revised: 21 June 2015
Accepted: 15 October 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1510842495

Digital Object Identifier
doi:10.2140/ant.2016.10.533

Mathematical Reviews number (MathSciNet)
MR3513130

Zentralblatt MATH identifier
1348.20058

Subjects
Primary: 20G44: Kac-Moody groups
Secondary: 14L15: Group schemes 22E67: Loop groups and related constructions, group-theoretic treatment [See also 58D05] 19C99: None of the above, but in this section

Keywords
affine Kac–Moody group Steinberg group Curtis–Tits presentation

Citation

Allcock, Daniel. Presentation of affine Kac–Moody groups over rings. Algebra Number Theory 10 (2016), no. 3, 533--556. doi:10.2140/ant.2016.10.533. https://projecteuclid.org/euclid.ant/1510842495


Export citation

References

  • P. Abramenko and B. Mühlherr, “Présentations de certaines $B\!N$-paires jumelées comme sommes amalgamées”, C. R. Acad. Sci. Paris Sér. I Math. 325:7 (1997), 701–706.
  • D. Allcock, “Steinberg groups as amalgams”, preprint, 2015.
  • D. Allcock and L. Carbone, “Presentation of hyperbolic Kac–Moody groups over rings”, J. Algebra 445 (2016), 232–243.
  • L. Bao and L. Carbone, “Integral forms of Kac–Moody groups and Eisenstein series in low dimensional supergravity theories”, preprint, 2015.
  • H. Behr, “Über die endliche Definierbarkeit verallgemeinerter Einheitengruppen, II”, Invent. Math. 4 (1967), 265–274.
  • H. Behr, “Arithmetic groups over function fields, I: A complete characterization of finitely generated and finitely presented arithmetic subgroups of reductive algebraic groups”, J. Reine Angew. Math. 495 (1998), 79–118.
  • I. Capdeboscq, “Bounded presentations of Kac–Moody groups”, J. Group Theory 16:6 (2013), 899–905.
  • R. W. Carter, Simple groups of Lie type, Pure and Applied Mathematics 28, Wiley, London, 1972.
  • A. Devillers and B. Mühlherr, “On the simple connectedness of certain subsets of buildings”, Forum Math. 19:6 (2007), 955–970.
  • A. Eskin and B. Farb, “Quasi-flats and rigidity in higher rank symmetric spaces”, J. Amer. Math. Soc. 10:3 (1997), 653–692.
  • B. Farb and R. Schwartz, “The large-scale geometry of Hilbert modular groups”, J. Differential Geom. 44:3 (1996), 435–478.
  • H. Garland, “The arithmetic theory of loop groups”, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 5–136.
  • T. Hartnick and R. K öhl, “Two-spherical topological Kac–Moody groups are Kazhdan”, J. Group Theory 18:4 (2015), 649–654.
  • V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, 1990.
  • B. Kleiner and B. Leeb, “Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings”, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115–197.
  • R. V. Moody and A. Pianzola, Lie algebras with triangular decompositions, John Wiley & Sons, New York, 1995.
  • J. Morita, “Commutator relations in Kac–Moody groups”, Proc. Japan Acad. Ser. A Math. Sci. 63:1 (1987), 21–22.
  • J. Morita, “Root strings with three or four real roots in Kac–Moody root systems”, Tohoku Math. J. $(2)$ 40:4 (1988), 645–650.
  • J. Morita and U. Rehmann, “A Matsumoto-type theorem for Kac–Moody groups”, Tohoku Math. J. $(2)$ 42:4 (1990), 537–560.
  • M. Neuhauser, “Kazhdan's property T for the symplectic group over a ring”, Bull. Belg. Math. Soc. Simon Stevin 10:4 (2003), 537–550.
  • R. E. Schwartz, “The quasi-isometry classification of rank one lattices”, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 133–168.
  • Y. Shalom, “Bounded generation and Kazhdan's property (T)”, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 145–168.
  • S. Splitthoff, “Finite presentability of Steinberg groups and related Chevalley groups”, pp. 635–687 in Applications of algebraic $K$-theory to algebraic geometry and number theory (Boulder, CO, 1983), vol. II, edited by S. J. Bloch et al., Contemp. Math. 55, American Mathematical Society, Providence, RI, 1986.
  • R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven, CT, 1968.
  • J. Tits, “Groups and group functors attached to Kac–Moody data”, pp. 193–223 in Workshop Bonn 1984 (Bonn, 1984), edited by F. Hirzebruch et al., Lecture Notes in Math. 1111, Springer, Berlin, 1985.
  • J. Tits, “Uniqueness and presentation of Kac–Moody groups over fields”, J. Algebra 105:2 (1987), 542–573.