Algebra & Number Theory

Congruence property in conformal field theory

Chongying Dong, Xingjun Lin, and Siu-Hung Ng

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The congruence subgroup property is established for the modular representations associated to any modular tensor category. This result is used to prove that the kernel of the representation of the modular group on the conformal blocks of any rational, C2-cofinite vertex operator algebra is a congruence subgroup. In particular, the q-character of each irreducible module is a modular function on the same congruence subgroup. The Galois symmetry of the modular representations is obtained and the order of the anomaly for those modular categories satisfying some integrality conditions is determined.

Article information

Source
Algebra Number Theory, Volume 9, Number 9 (2015), 2121-2166.

Dates
Received: 5 March 2015
Revised: 20 July 2015
Accepted: 19 August 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1510842423

Digital Object Identifier
doi:10.2140/ant.2015.9.2121

Mathematical Reviews number (MathSciNet)
MR3435813

Zentralblatt MATH identifier
1377.17025

Subjects
Primary: 17B69: Vertex operators; vertex operator algebras and related structures
Secondary: 18D10: Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories [See also 19D23] 20H05: Unimodular groups, congruence subgroups [See also 11F06, 19B37, 22E40, 51F20] 81R05: Finite-dimensional groups and algebras motivated by physics and their representations [See also 20C35, 22E70]

Keywords
Frobenius–Schur indicator modular tensor category modular group vertex operator algebra

Citation

Dong, Chongying; Lin, Xingjun; Ng, Siu-Hung. Congruence property in conformal field theory. Algebra Number Theory 9 (2015), no. 9, 2121--2166. doi:10.2140/ant.2015.9.2121. https://projecteuclid.org/euclid.ant/1510842423


Export citation

References

  • T. Abe, G. Buhl, and C. Dong, “Rationality, regularity, and $C\sb 2$-cofiniteness”, Trans. Amer. Math. Soc. 356:8 (2004), 3391–3402.
  • B. Bakalov and A. Kirillov, Jr., Lectures on tensor categories and modular functors, University Lecture Series 21, American Mathematical Society, Providence, RI, 2001.
  • P. Bantay, “The Frobenius–Schur indicator in conformal field theory”, Phys. Lett. B 394:1–2 (1997), 87–88.
  • P. Bantay, “The kernel of the modular representation and the Galois action in RCFT”, Comm. Math. Phys. 233:3 (2003), 423–438.
  • M. Bauer, A. Coste, C. Itzykson, and P. Ruelle, “Comments on the links between ${\rm su}(3)$ modular invariants, simple factors in the Jacobian of Fermat curves, and rational triangular billiards”, J. Geom. Phys. 22:2 (1997), 134–189.
  • F. R. Beyl, “The Schur multiplicator of ${\rm SL}(2,{\mathbb Z}/m{\mathbb Z})$ and the congruence subgroup property”, Math. Z. 191:1 (1986), 23–42.
  • J. de Boer and J. Goeree, “Markov traces and ${\rm II}\sb 1$ factors in conformal field theory”, Comm. Math. Phys. 139:2 (1991), 267–304.
  • A. Cappelli, C. Itzykson, and J.-B. Zuber, “Modular invariant partition functions in two dimensions”, Nuclear Phys. B 280:3 (1987), 445–465.
  • A. Cappelli, C. Itzykson, and J.-B. Zuber, “The ${\rm A}$-${\rm D}$-${\rm E}$ classification of minimal and $A\sp {(1)}\sb 1$ conformal invariant theories”, Comm. Math. Phys. 113:1 (1987), 1–26.
  • J. L. Cardy, “Operator content of two-dimensional conformally invariant theories”, Nuclear Phys. B 270:2 (1986), 186–204.
  • A. Coste and T. Gannon, “Remarks on Galois symmetry in rational conformal field theories”, Phys. Lett. B 323:3–4 (1994), 316–321.
  • A. Coste and T. Gannon, “Congruence subgroups and rational conformal field theory”, preprint, 1999.
  • C. Dong and C. Jiang, “A characterization of vertex operator algebra $L(1/2,0)\otimes L(1/2,0)$”, Comm. Math. Phys. 296:1 (2010), 69–88.
  • C. Dong and C. Jiang, “A characterization of vertex operator algebras $ V_ {\mathbb{Z}\alpha}^{+} $, I”, 2011. To appear in J. Reine Angew. Math.
  • C. Dong and C. Jiang, “A characterization of the rational vertex operator algebra $V\sb {\mathbb{Z}\alpha}\sp +$, II”, Adv. Math. 247 (2013), 41–70.
  • C. Dong and G. Mason, “Vertex operator algebras and Moonshine: a survey”, pp. 101–136 in Progress in algebraic combinatorics (Fukuoka, 1993), edited by E. Bannai and A. Munemasa, Adv. Stud. Pure Math. 24, Math. Soc. Japan, Tokyo, 1996.
  • C. Dong and W. Zhang, “On classification of rational vertex operator algebras with central charges less than 1”, J. Algebra 320:1 (2008), 86–93.
  • C. Dong, H. Li, and G. Mason, “Regularity of rational vertex operator algebras”, Adv. Math. 132:1 (1997), 148–166.
  • C. Dong, H. Li, and G. Mason, “Twisted representations of vertex operator algebras”, Math. Ann. 310:3 (1998), 571–600.
  • C. Dong, H. Li, and G. Mason, “Vertex operator algebras and associative algebras”, J. Algebra 206:1 (1998), 67–96.
  • C. Dong, H. Li, and G. Mason, “Modular-invariance of trace functions in orbifold theory and generalized Moonshine”, Comm. Math. Phys. 214:1 (2000), 1–56.
  • C. Dong, G. Mason, and K. Nagatomo, “Quasi-modular forms and trace functions associated to free boson and lattice vertex operator algebras”, Internat. Math. Res. Notices 8 (2001), 409–427.
  • C. Dong, X. Jiao, and F. Xu, “Quantum dimensions and quantum Galois theory”, Trans. Amer. Math. Soc. 365:12 (2013), 6441–6469.
  • W. Eholzer, “On the classification of modular fusion algebras”, Comm. Math. Phys. 172:3 (1995), 623–659.
  • W. Eholzer and N.-P. Skoruppa, “Modular invariance and uniqueness of conformal characters”, Comm. Math. Phys. 174:1 (1995), 117–136.
  • P. Etingof, “On Vafa's theorem for tensor categories”, Math. Res. Lett. 9:5–6 (2002), 651–657.
  • P. Etingof and S. Gelaki, “On the exponent of finite-dimensional Hopf algebras”, Math. Res. Lett. 6:2 (1999), 131–140.
  • P. Etingof, D. Nikshych, and V. Ostrik, “On fusion categories”, Ann. of Math. $(2)$ 162:2 (2005), 581–642.
  • I. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics 134, Academic Press, Boston, 1988.
  • I. B. Frenkel, Y.-Z. Huang, and J. Lepowsky, “On axiomatic approaches to vertex operator algebras and modules”, Mem. Amer. Math. Soc. 104:494 (1993), viii+64.
  • J. Fuchs and C. Schweigert, “Category theory for conformal boundary conditions”, pp. 25–70 in Vertex operator algebras in mathematics and physics (Toronto, ON, 2000), edited by S. Berman et al., Fields Inst. Commun. 39, Amer. Math. Soc., Providence, RI, 2003.
  • J. Fuchs, A. C. Ganchev, K. Szlachányi, and P. Vecsernyés, “$S\sb 4$ symmetry of $6j$ symbols and Frobenius–Schur indicators in rigid monoidal $C\sp *$ categories”, J. Math. Phys. 40:1 (1999), 408–426.
  • T. Gannon, “Modular data: the algebraic combinatorics of conformal field theory”, J. Algebraic Combin. 22:2 (2005), 211–250.
  • T. Gannon, Moonshine beyond the Monster, Cambridge University Press, 2006.
  • S.-m. Hong and E. Rowell, “On the classification of the Grothendieck rings of non-self-dual modular categories”, J. Algebra 324:5 (2010), 1000–1015.
  • Y.-Z. Huang, “A theory of tensor products for module categories for a vertex operator algebra, IV”, J. Pure Appl. Algebra 100:1–3 (1995), 173–216.
  • Y.-Z. Huang, “Rigidity and modularity of vertex tensor categories”, Commun. Contemp. Math. 10:suppl. 1 (2008), 871–911.
  • Y.-Z. Huang, “Vertex operator algebras and the Verlinde conjecture”, Commun. Contemp. Math. 10:1 (2008), 103–154.
  • Y.-Z. Huang and J. Lepowsky, “A theory of tensor products for module categories for a vertex operator algebra, I”, Selecta Math. $($N.S.$)$ 1:4 (1995), 699–756.
  • Y.-Z. Huang and J. Lepowsky, “A theory of tensor products for module categories for a vertex operator algebra, II”, Selecta Math. $($N.S.$)$ 1:4 (1995), 757–786.
  • Y.-Z. Huang and J. Lepowsky, “A theory of tensor products for module categories for a vertex operator algebra, III”, J. Pure Appl. Algebra 100:1–3 (1995), 141–171.
  • V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, 1990.
  • V. G. Kac and D. H. Peterson, “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. in Math. 53:2 (1984), 125–264.
  • G. Karpilovsky, Projective representations of finite groups, Monographs and Textbooks in Pure and Applied Mathematics 94, Marcel Dekker, New York, 1985.
  • Y. Kashina, Y. Sommerhäuser, and Y. Zhu, “On higher Frobenius–Schur indicators”, Mem. Amer. Math. Soc. 181:855 (2006), viii+65.
  • C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer, New York, 1995.
  • E. B. Kiritsis, “Proof of the completeness of the classification of rational conformal theories with $c=1$”, Phys. Lett. B 217:4 (1989), 427–430.
  • M. Knopp and G. Mason, “On vector-valued modular forms and their Fourier coefficients”, Acta Arith. 110:2 (2003), 117–124.
  • J. Lepowsky and H. Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics 227, Birkhäuser, Boston, 2004.
  • V. Linchenko and S. Montgomery, “A Frobenius–Schur theorem for Hopf algebras”, Algebr. Represent. Theory 3:4 (2000), 347–355.
  • G. Mason and S.-H. Ng, “Central invariants and Frobenius–Schur indicators for semisimple quasi-Hopf algebras”, Adv. Math. 190:1 (2005), 161–195.
  • J. Mennicke, “On Ihara's modular group”, Invent. Math. 4 (1967), 202–228.
  • G. Moore, “Atkin–Lehner symmetry”, Nuclear Phys. B 293:1 (1987), 139–188.
  • G. Moore and N. Seiberg, “Lectures on RCFT”, pp. 263–361 in Physics, geometry, and topology (Banff, AB, 1989), edited by H. C. Lee, NATO Adv. Sci. Inst. Ser. B Phys. 238, Plenum, New York, 1990.
  • M. Müger, “From subfactors to categories and topology, I: Frobenius algebras in and Morita equivalence of tensor categories”, J. Pure Appl. Algebra 180:1–2 (2003), 81–157.
  • M. Müger, “From subfactors to categories and topology, II: The quantum double of tensor categories and subfactors”, J. Pure Appl. Algebra 180:1–2 (2003), 159–219.
  • M. Newman, Integral matrices, Pure and Applied Mathematics 45, Academic Press, New York-London, 1972.
  • S.-H. Ng and P. Schauenburg, “Frobenius–Schur indicators and exponents of spherical categories”, Adv. Math. 211:1 (2007), 34–71.
  • S.-H. Ng and P. Schauenburg, “Higher Frobenius–Schur indicators for pivotal categories”, pp. 63–90 in Hopf algebras and generalizations, edited by L. H. Kauffman et al., Contemp. Math. 441, American Mathematical Society, Providence, RI, 2007.
  • S.-H. Ng and P. Schauenburg, “Central invariants and higher indicators for semisimple quasi-Hopf algebras”, Trans. Amer. Math. Soc. 360:4 (2008), 1839–1860.
  • S.-H. Ng and P. Schauenburg, “Congruence subgroups and generalized Frobenius–Schur indicators”, Comm. Math. Phys. 300:1 (2010), 1–46.
  • A. Rocha-Caridi, “Vacuum vector representations of the Virasoro algebra”, pp. 451–473 in Vertex operators in mathematics and physics (Berkeley, Calif., 1983), edited by J. Lepowsky et al., Math. Sci. Res. Inst. Publ. 3, Springer, New York, 1985.
  • E. Rowell, R. Stong, and Z. Wang, “On classification of modular tensor categories”, Comm. Math. Phys. 292:2 (2009), 343–389.
  • P. Schauenburg, “On the Frobenius–Schur indicators for quasi-Hopf algebras”, J. Algebra 282:1 (2004), 129–139.
  • Y. Sommerhäuser and Y. Zhu, “On the central charge of a factorizable Hopf algebra”, preprint, 2009.
  • Y. Sommerhäuser and Y. Zhu, “Hopf algebras and congruence subgroups”, Mem. Amer. Math. Soc. 219:1028 (2012), vi+134.
  • Y. Sommerhäuser and Y. Zhu, “On the central charge of a factorizable Hopf algebra”, Adv. Math. 236 (2013), 158–223.
  • V. G. Turaev, Quantum invariants of knots and 3-manifolds, 2nd ed., de Gruyter Studies in Mathematics 18, Walter de Gruyter & Co., Berlin, 2010.
  • C. Vafa, “Toward classification of conformal theories”, Phys. Lett. B 206:3 (1988), 421–426.
  • E. Verlinde, “Fusion rules and modular transformations in $2$D conformal field theory”, Nuclear Phys. B 300:3 (1988), 360–376.
  • Z. Wang, Topological quantum computation, CBMS Regional Conference Series in Mathematics 112, American Mathematical Society, Providence, RI, 2010.
  • L. C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics 83, Springer, New York, 1997.
  • C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, 1994.
  • K. Wohlfahrt, “An extension of F. Klein's level concept”, Illinois J. Math. 8 (1964), 529–535.
  • F. Xu, “Some computations in the cyclic permutations of completely rational nets”, Comm. Math. Phys. 267:3 (2006), 757–782.
  • W. Zhang and C. Dong, “$W$-algebra $W(2,2)$ and the vertex operator algebra $L(1/2,0)\otimes L(1/2,0)$”, Comm. Math. Phys. 285:3 (2009), 991–1004.
  • Y. Zhu, “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc. 9:1 (1996), 237–302.