Algebra & Number Theory

A duality in Buchsbaum rings and triangulated manifolds

Satoshi Murai, Isabella Novik, and Ken-ichi Yoshida

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let Δ be a triangulated homology ball whose boundary complex is Δ. A result of Hochster asserts that the canonical module of the Stanley–Reisner ring F[Δ] of Δ is isomorphic to the Stanley–Reisner module F[Δ,Δ] of the pair (Δ,Δ). This result implies that an Artinian reduction of F[Δ,Δ] is (up to a shift in grading) isomorphic to the Matlis dual of the corresponding Artinian reduction of F[Δ]. We establish a generalization of this duality to all triangulations of connected orientable homology manifolds with boundary. We also provide an explicit algebraic interpretation of the h-numbers of Buchsbaum complexes and use it to prove the monotonicity of h-numbers for pairs of Buchsbaum complexes as well as the unimodality of h-vectors of barycentric subdivisions of Buchsbaum polyhedral complexes. We close with applications to the algebraic manifold g-conjecture.

Article information

Algebra Number Theory, Volume 11, Number 3 (2017), 635-656.

Received: 8 March 2016
Accepted: 8 October 2016
First available in Project Euclid: 19 October 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 13F55: Stanley-Reisner face rings; simplicial complexes [See also 55U10]
Secondary: 13H10: Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [See also 14M05] 05E40: Combinatorial aspects of commutative algebra 52B05: Combinatorial properties (number of faces, shortest paths, etc.) [See also 05Cxx] 57Q15: Triangulating manifolds

triangulated manifolds Buchsbaum rings $h$-vectors Stanley–Reisner rings


Murai, Satoshi; Novik, Isabella; Yoshida, Ken-ichi. A duality in Buchsbaum rings and triangulated manifolds. Algebra Number Theory 11 (2017), no. 3, 635--656. doi:10.2140/ant.2017.11.635.

Export citation


  • K. A. Adiprasito and R. Sanyal, “Relative Stanley–Reisner theory and upper bound theorems for Minkowski sums”, Publ. Math. Inst. Hautes Études Sci. 124 (2016), 99–163.
  • J. W. Alexander, “The combinatorial theory of complexes”, Ann. of Math. $(2)$ 31:2 (1930), 292–320.
  • Y. Aoyama, “On the depth and the projective dimension of the canonical module”, Japan. J. Math. $($N.S.$)$ 6:1 (1980), 61–66.
  • Y. Aoyama and S. Goto, “Some special cases of a conjecture of Sharp”, J. Math. Kyoto Univ. 26:4 (1986), 613–634.
  • J. B öhm and S. A. Papadakis, “Weak Lefschetz property and stellar subdivisions of Gorenstein complexes”, preprint, 2015.
  • W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1993.
  • S. Goto, “On the associated graded rings of parameter ideals in Buchsbaum rings”, J. Algebra 85:2 (1983), 490–534.
  • H.-G. Gräbe, “Über den Stanley–Reisner–Ring von Quasimannigfaltigkeiten”, Math. Nachr. 117 (1984), 161–174.
  • H.-G. Gräbe, “Generalized Dehn–Sommerville equations and an upper bound theorem”, Beiträge Algebra Geom. 25 (1987), 47–60.
  • M. Juhnke-Kubitzke and S. Murai, “Balanced generalized lower bound inequality for simplicial polytopes”, preprint, 2015.
  • S. Klee and I. Novik, “Face enumeration on simplicial complexes”, pp. 653–686 in Recent Trends in Combinatorics, edited by A. Beveridge et al., The IMA Volumes in Mathematics and its Applications 159, Springer, 2016.
  • P. McMullen and D. W. Walkup, “A generalized lower-bound conjecture for simplicial polytopes”, Mathematika 18 (1971), 264–273.
  • S. Murai, “On face vectors of barycentric subdivisions of manifolds”, SIAM J. Discrete Math. 24:3 (2010), 1019–1037.
  • S. Murai and E. Nevo, “On $r$-stacked triangulated manifolds”, J. Algebraic Combin. 39:2 (2014), 373–388.
  • S. Murai and I. Novik, “Face numbers of manifolds with boundary”, preprint, 2016. To appear in Int. Math. Res. Not. IMRN.
  • S. Murai and K. Yanagawa, “Squarefree $P$-modules and the $\mathbf{cd}$-index”, Adv. Math. 265 (2014), 241–279.
  • I. Novik, “Upper bound theorems for homology manifolds”, Israel J. Math. 108 (1998), 45–82.
  • I. Novik and E. Swartz, “Gorenstein rings through face rings of manifolds”, Compos. Math. 145:4 (2009), 993–1000.
  • I. Novik and E. Swartz, “Socles of Buchsbaum modules, complexes and posets”, Adv. Math. 222:6 (2009), 2059–2084.
  • U. Pachner, “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten”, Abh. Math. Sem. Univ. Hamburg 57 (1987), 69–86.
  • U. Pachner, “P.L. homeomorphic manifolds are equivalent by elementary shellings”, European J. Combin. 12:2 (1991), 129–145.
  • P. Schenzel, “On the number of faces of simplicial complexes and the purity of Frobenius”, Math. Z. 178:1 (1981), 125–142.
  • P. Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum–Ringe, Lecture Notes in Mathematics 907, Springer, 1982.
  • R. P. Stanley, “A monotonicity property of $h$-vectors and $h\sp *$-vectors”, European J. Combin. 14:3 (1993), 251–258.
  • R. P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics 41, Birkhäuser, Boston, 1996.
  • J. Stückrad and W. Vogel, Buchsbaum rings and applications: an interaction between algebra, geometry and topology, Springer, 1986.
  • N. Suzuki, “The Koszul complex of Buchsbaum modules”, pp. 15–25 in Commutative Algebra and Algebraic Geometry (Kyoto University, 1981), vol. 446, RIMS Kokyuroku, 1981.
  • E. Swartz, “Thirty-five years and counting”, preprint, 2014.