Open Access
November 2020 Comparing with octopi
Gil Alon, Gady Kozma
Ann. Inst. H. Poincaré Probab. Statist. 56(4): 2672-2685 (November 2020). DOI: 10.1214/20-AIHP1054

Abstract

Operator inequalities with a geometric flavour have been successful in studying mixing of random walks and quantum mechanics. We suggest a new way to extract such inequalities using the octopus inequality of Caputo, Liggett and Richthammer.

Les inégalités d’opérateurs de nature géométrique ont été très utiles pour étudier le mélange des marches aléatoires et la mécanique quantique. Nous suggérons une nouvelle approche pour exhiber des inégalités de ce type en utilisant l’inégalité « pieuvre » (octopus inequality) de Caputo, Liggett et Richthammer.

Citation

Download Citation

Gil Alon. Gady Kozma. "Comparing with octopi." Ann. Inst. H. Poincaré Probab. Statist. 56 (4) 2672 - 2685, November 2020. https://doi.org/10.1214/20-AIHP1054

Information

Received: 21 December 2018; Revised: 24 January 2020; Accepted: 27 February 2020; Published: November 2020
First available in Project Euclid: 21 October 2020

MathSciNet: MR4164852
Digital Object Identifier: 10.1214/20-AIHP1054

Subjects:
Primary: 20C30 , 60B15

Keywords: Mixing times , Random walk on the symmetric group , The interchange process , The octopus inequality , The quantum Heisenberg ferromagnet , The stirring process

Rights: Copyright © 2020 Institut Henri Poincaré

Vol.56 • No. 4 • November 2020
Back to Top