Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Inverting the cut-tree transform

Louigi Addario-Berry, Daphné Dieuleveut, and Christina Goldschmidt

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We consider fragmentations of an $\mathbb{R}$-tree $T$ driven by cuts arriving according to a Poisson process on $T\times[0,\infty)$, where the first co-ordinate specifies the location of the cut and the second the time at which it occurs. The genealogy of such a fragmentation is encoded by the so-called cut-tree, which was introduced by Bertoin and Miermont (Ann. Appl. Probab. 23 (4) (2013) 1469–1493) for a fragmentation of the Brownian continuum random tree. The cut-tree was generalised by Dieuleveut (Ann. Appl. Probab. 25 (4) (2015) 2215–2262) to a fragmentation of the $\alpha$-stable trees, $\alpha\in(1,2)$, and by Broutin and Wang (Bernoulli 23 (4A) (2017) 2380–2433) to the inhomogeneous continuum random trees of Aldous and Pitman (Probab. Theory Related Fields 118 (4) (2000) 455–482). In the first two cases, the projections of the forest-valued fragmentation processes onto the sequence of masses of their constituent subtrees yield an important family of examples of Bertoin’s self-similar fragmentations (Ann. Inst. Henri Poincaré Probab. Stat. 38 (3) (2002) 319–340); in the first case the time-reversal of the fragmentation gives an additive coalescent. Remarkably, in all of these cases, the law of the cut-tree is the same as that of the original $\mathbb{R}$-tree.

In this paper, we develop a clean general framework for the study of cut-trees of $\mathbb{R}$-trees. We then focus particularly on the problem of reconstruction: how to recover the original $\mathbb{R}$-tree from its cut-tree. This has been studied in the setting of the Brownian CRT by Broutin and Wang (Electron. J. Probab. 22 (2017) 80), who prove that it is possible to reconstruct the original tree in distribution. We describe an enrichment of the cut-tree transformation, which endows the cut-tree with information we call a consistent collection of routings. We show this procedure is well-defined under minimal conditions on the $\mathbb{R}$-trees. We then show that, for the case of the Brownian CRT and the $\alpha$-stable trees with $\alpha\in(1,2)$, the original tree and the Poisson process of cuts thereon can both be almost surely reconstructed from the enriched cut-trees. For the latter results, our methods make essential use of the self-similarity and re-rooting invariance of these trees.


Nous considérons des fragmentations d’un $\mathbb{R}$-arbre $T$ dirigées par des coupures qui arrivent selon un processus de Poisson sur $T\times[0,\infty)$, où la première composante désigne le point auquel se produit la coupure et le deuxième, l’instant auquel elle a lieu. La généalogie d’une telle fragmentation est codée par l’arbre des coupes, qui a été introduit par Bertoin et Miermont (Ann. Appl. Probab. 23 (4) (2013) 1469–1493) pour une fragmentation de l’arbre brownien. L’arbre des coupes a ensuite été généralisé par Dieuleveut (Ann. Appl. Probab. 25 (4) (2015) 2215–2262) à une fragmentation des arbres $\alpha$-stables, pour $\alpha\in(1,2)$, et par Broutin et Wang (Bernoulli 23 (4A) (2017) 2380–2433) aux arbres continus inhomogènes d’Aldous et Pitman (Probab. Theory Related Fields 118 (4) (2000) 455–482). Dans les deux premiers cas, l’évolution de la suite des masses des sous-arbres apparaissant dans le processus de fragmentation constitue une famille importante de processus de fragmentation auto-similaires de Bertoin (Ann. Inst. Henri Poincaré Probab. Stat. 38 (3) (2002) 319–340); dans le premier cas, une fois inversée dans le temps, la fragmentation devient un coalescent additif. Remarquablement, dans tous ces cas, la loi de l’arbre des coupes est la même que celle du $\mathbb{R}$-arbre initial.

Dans cet article, nous développons un cadre général pour l’étude de l’arbre des coupes d’un $\mathbb{R}$-arbre. Par la suite, nous nous concentrons particulièrement sur le problème de la reconstruction : comment retrouver le $\mathbb{R}$-arbre initial à partir de son arbre des coupes. Ce problème a été étudié pour l’arbre brownien par Broutin et Wang (Electron. J. Probab. 22 (2017) 80), qui démontrent qu’il est possible de reconstruire l’arbre initial en loi. Nous décrivons un enrichissement de la construction de l’arbre des coupes, qui dote l’arbre des coupes d’une structure supplémentaire que nous appelons une collection cohérente de routages. Nous démontrons que ce procédé est bien défini sous des conditions minimales sur le $\mathbb{R}$-arbre. Ensuite, nous démontrons que pour l’arbre brownien ainsi que pour l’arbre $\alpha$-stable avec $\alpha\in(1,2)$, l’arbre initial muni de son processus de Poisson de coupures peut être reconstruit presque sûrement à partir de l’arbre des coupes enrichi. Pour ces derniers résultats, nous utilisons de façon essentielle l’auto-similarité et l’invariance par réenracinement de ces $\mathbb{R}$-arbres aléatoires.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 55, Number 3 (2019), 1349-1376.

Received: 11 July 2016
Revised: 14 March 2018
Accepted: 18 July 2018
First available in Project Euclid: 25 September 2019

Permanent link to this document

Digital Object Identifier

Primary: 60C05: Combinatorial probability
Secondary: 05C05: Trees 60G52: Stable processes 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)

$\mathbb{R}$-tree Cut-tree Fragmentation


Addario-Berry, Louigi; Dieuleveut, Daphné; Goldschmidt, Christina. Inverting the cut-tree transform. Ann. Inst. H. Poincaré Probab. Statist. 55 (2019), no. 3, 1349--1376. doi:10.1214/18-AIHP921.

Export citation


  • [1] R. Abraham and J.-F. Delmas. The forest associated with the record process on a Lévy tree. Stochastic Process. Appl. 123 (9) (2013) 3497–3517.
  • [2] R. Abraham, J.-F. Delmas and P. Hoscheit. A note on the Gromov–Hausdorff–Prokhorov distance between (locally) compact metric measure spaces. Electron. J. Probab. 18 (2013) 14, 21 pp. (electronic).
  • [3] L. Addario-Berry, N. Broutin and C. Holmgren. Cutting down trees with a Markov chainsaw. Ann. Appl. Probab. 24 (6) (2014) 2297–2339.
  • [4] M. Albenque and C. Goldschmidt. The Brownian continuum random tree as the unique solution to a fixed point equation. Electron. Commun. Probab. 20 (2015) 61, 14 pp. (electronic).
  • [5] D. Aldous. The continuum random tree. I. Ann. Probab. 19 (1) (1991) 1–28.
  • [6] D. Aldous. The continuum random tree II: An overview. In Stochastic Analysis. Cambridge University Press, 1991.
  • [7] D. Aldous. The continuum random tree III. Ann. Probab. 21 (1) (1993) 248–289.
  • [8] D. Aldous. Recursive self-similarity for random trees, random triangulations and Brownian excursion. Ann. Probab. 22 (2) (1994) 527–545.
  • [9] D. Aldous and J. Pitman. The standard additive coalescent. Ann. Probab. 26 (4) (1998) 1703–1726.
  • [10] D. Aldous and J. Pitman. A family of random trees with random edge lengths. Random Structures Algorithms 15 (2) (1999) 176–195.
  • [11] D. Aldous and J. Pitman. Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent. Probab. Theory Related Fields 118 (4) (2000) 455–482.
  • [12] D. J. Aldous and A. Bandyopadhyay. A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 (2) (2005) 1047–1110.
  • [13] E. Baur and J. Bertoin. Cutting edges at random in large recursive trees. In Stochastic Analysis and Applications 2014 51–76. Springer Proc. Math. Stat. 100. Springer, Cham, 2014.
  • [14] J. Bertoin. Self-similar fragmentations. Ann. Inst. Henri Poincaré Probab. Stat. 38 (3) (2002) 319–340.
  • [15] J. Bertoin. Fires on trees. Ann. Inst. Henri Poincaré Probab. Stat. 48 (4) (2012) 909–921.
  • [16] J. Bertoin. The cut-tree of large recursive trees. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2) (2015) 478–488.
  • [17] J. Bertoin and G. Miermont. The cut-tree of large Galton–Watson trees and the Brownian CRT. Ann. Appl. Probab. 23 (4) (2013) 1469–1493.
  • [18] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge University Press, Cambridge, 1989.
  • [19] N. Broutin and M. Wang. Cutting down $\mathbf{p}$-trees and inhomogeneous continuum random trees. Bernoulli 23 (4A) (2017) 2380–2433.
  • [20] N. Broutin and M. Wang. Reversing the cut tree of the Brownian continuum random tree. Electron. J. Probab. 22 (2017) 80, 23 pp. (electronic).
  • [21] D. Burago, Y. Burago and S. Ivanov. A Course in Metric Geometry. Graduate Studies in Mathematics 33. American Mathematical Society, Providence, RI, 2001.
  • [22] M. Camarri and J. Pitman. Limit distributions and random trees derived from the birthday problem with unequal probabilities. Electron. J. Probab. 5 (2000) 2, 18 pp. (electronic).
  • [23] E. Crane. Steady state clusters and the Ráth–Tóth mean field forest fire model. Available at arXiv:1809.03462.
  • [24] E. Crane, N. Freeman and B. Tóth. Cluster growth in the dynamical Erdős–Rényi process with forest fires. Electron. J. Probab. 20 (2015) 101, 33 pp. (electronic).
  • [25] D. Dieuleveut. The vertex-cut-tree of Galton–Watson trees converging to a stable tree. Ann. Appl. Probab. 25 (4) (2015) 2215–2262.
  • [26] M. Drmota, A. Iksanov, M. Moehle and U. Roesler. A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Random Structures Algorithms 34 (3) (2009) 319–336.
  • [27] T. Duquesne and J.-F. Le Gall. Random Trees, Lévy Processes and Spatial Branching Processes. Asterisque 281. SMF, 2002.
  • [28] T. Duquesne and J.-F. Le Gall. Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131 (4) (2005) 553–603.
  • [29] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
  • [30] R. Durrett and T. M. Liggett. Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64 (3) (1983) 275–301.
  • [31] S. N. Evans, J. Pitman and A. Winter. Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Related Fields 134 (1) (2006) 81–126.
  • [32] S. N. Evans and A. Winter. Subtree prune and regraft: A reversible real tree-valued Markov process. Ann. Probab. 34 (3) (2006) 918–961.
  • [33] J. A. Fill, N. Kapur and A. Panholzer. Destruction of very simple trees. Algorithmica 46 (3–4) (2006) 345–366.
  • [34] K. Fukaya. Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87 (3) (1987) 517–547.
  • [35] C. Goldschmidt and B. Haas. A line-breaking construction of the stable trees. Electron. J. Probab. 20 (2015) 16, 24 pp. (electronic).
  • [36] A. Greven, P. Pfaffelhuber and A. Winter. Convergence in distribution of random metric measure spaces ($\Lambda$-coalescent measure trees). Probab. Theory Related Fields 145 (1) (2009) 285–322.
  • [37] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces, English edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2007. Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates.
  • [38] B. Haas and G. Miermont. Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees. Ann. Probab. 40 (6) (2012) 2589–2666.
  • [39] B. Haas, J. Pitman and M. Winkel. Spinal partitions and invariance under re-rooting of continuum random trees. Ann. Probab. 37 (4) (2009) 1381–1411.
  • [40] C. Holmgren. Random records and cuttings in binary search trees. Combin. Probab. Comput. 19 (3) (2010) 391–424.
  • [41] A. Iksanov and M. Möhle. A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Probab. 12 (2007) 28–35.
  • [42] S. Janson. Random cutting and records in deterministic and random trees. Random Structures Algorithms 29 (2) (2006) 139–179.
  • [43] I. Kortchemski. Invariance principles for Galton–Watson trees conditioned on the number of leaves. Stochastic Process. Appl. 122 (9) (2012) 3126–3172.
  • [44] A. Meir and J. W. Moon. Cutting down random trees. J. Aust. Math. Soc. 11 (1970) 313–324.
  • [45] A. Meir and J. W. Moon. Cutting down recursive trees. Math. Biosci. 21 (1974) 173–181.
  • [46] G. Miermont. Self-similar fragmentations derived from the stable tree. I. Splitting at heights. Probab. Theory Related Fields 127 (3) (2003) 423–454.
  • [47] G. Miermont. Self-similar fragmentations derived from the stable tree. II. Splitting at nodes. Probab. Theory Related Fields 131 (3) (2005) 341–375.
  • [48] G. Miermont. Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4) 42 (5) (2009) 725–781.
  • [49] A. Panholzer. Cutting down very simple trees. Quaest. Math. 29 (2) (2006) 211–227.
  • [50] J. Pitman. Combinatorial stochastic processes. In Lectures from the 32nd Summer School on Probability Theory Held in Saint-Flour, July 7–24, 2002, with a Foreword by Jean Picard. Lecture Notes in Mathematics 1875. Springer-Verlag, Berlin, 2006.
  • [51] B. Ráth and B. Tóth. Erdős–Rényi random graphs $+$ forest fires $=$ self-organized criticality. Electron. J. Probab. 14 (2009) 45, 1290–1327.
  • [52] D. Rizzolo. Scaling limits of Markov branching trees and Galton–Watson trees conditioned on the number of vertices with out-degree in a given set. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2) (2015) 512–532.