Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

On the fourth moment condition for Rademacher chaos

Christian Döbler and Kai Krokowski

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Adapting the spectral viewpoint suggested in (Ann. Probab. 40 (6) (2012) 2439–2459) in the context of symmetric Markov diffusion generators and recently exploited in the non-diffusive setup of a Poisson random measure (Ann. Probab. (2017)), we investigate the fourth moment condition for discrete multiple integrals with respect to general, i.e. non-symmetric and non-homogeneous, Rademacher sequences and show that, in this situation, the fourth moment alone does not govern the asymptotic normality. Indeed, here one also has to take into consideration the maximal influence of the corresponding kernel functions. In particular, we show that there is no exact fourth moment theorem for discrete multiple integrals of order $m\geq2$ with respect to a symmetric Rademacher sequence. This behavior, which is in contrast to the Gaussian (Ann. Probab. 33 (1) (2005) 177–193) and Poisson (Ann. Probab. (2017)) situation, closely resembles that of degenerate, non-symmetric $U$-statistics from the classical paper (J. Multivariate Anal. 34 (2) (1990) 275–289).


En adaptant le point de vue spectral proposé par Ledoux (Ann. Probab. 40 (6) (2012) 2439–2459) dans le cadre des générateurs des diffusions Markoviennes, qui a également été exploité récemment dans la situation non-diffusive d’une mesure aléatoire de Poisson (Ann. Probab. (2017)), nous étudions la condition du quatrième moment pour des intégrales multiples discrètes relatives à des suites de Rademacher générales, c.à.d. non-symétriques et non-homogènes, et nous démontrons que, dans ce cas, le quatrième moment ne gouverne pas complètement leur normalité asymptotique. En effet, il faut aussi tenir compte de l’influence maximale des fonctions de noyau correspondantes. En particulier, nous démontrons qu’il n’y a pas de théorème du quatrième moment exact pour des intégrales multiples discrètes de l’ordre $m\geq2$ relatives à une suite de Rademacher symétrique. Ce comportement, qui contraste avex les situations Gaussiennes (Ann. Probab. 33 (1) (2005) 177–193) et Poissoniennes (Ann. Probab. (2017)), ressemble fortement à celui des $U$-statistiques dégénerées et non-symétriques dans l’article classique (J. Multivariate Anal. 34 (2) (1990) 275–289).

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 55, Number 1 (2019), 61-97.

Received: 6 June 2017
Revised: 15 November 2017
Accepted: 16 November 2017
First available in Project Euclid: 18 January 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems 60H07: Stochastic calculus of variations and the Malliavin calculus 60H05: Stochastic integrals

Fourth moment theorem Stein’s method Discrete Malliavin calculus Rademacher sequences Carré du champ operator


Döbler, Christian; Krokowski, Kai. On the fourth moment condition for Rademacher chaos. Ann. Inst. H. Poincaré Probab. Statist. 55 (2019), no. 1, 61--97. doi:10.1214/17-AIHP876.

Export citation


  • [1] E. Azmoodeh, S. Campese and G. Poly. Fourth moment theorems for markov diffusion generators. J. Funct. Anal. 266 (4) (2014) 2341–2359.
  • [2] D. Bakry, I. Gentil and M. Ledoux. Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 348. Springer, Cham, 2014.
  • [3] S. Bourguin and G. Peccati. The Malliavin-Stein method on the Poisson space. In Stochastic Analysis for Poisson Point Processes, Chapter 6 185–228. G. Peccati and M. Reitzner (Eds). Mathematics, Statistics, Finance and Economics. Bocconi University Press and Springer, 2016.
  • [4] S. Campese, I. Nourdin, G. Peccati and G. Poly. Multivariate Gaussian approximations on Markov chaoses. Electron. Commun. Probab. 21 (48) (2016) 1–9.
  • [5] L. H. Y. Chen, L. Goldstein and Q.-M. Shao. Normal Approximation by Stein’s Method. Probability and Its Applications (New York). Springer, Heidelberg, 2011.
  • [6] P. de Jong. Central Limit Theorems for Generalized Multilinear Forms. CWI Tract 61. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989.
  • [7] P. de Jong. A central limit theorem for generalized multilinear forms. J. Multivariate Anal. 34 (2) (1990) 275–289.
  • [8] C. Döbler and G. Peccati. Quantiative de Jong theorems in any dimension. Electron. J. Probab. 22 (2) (2017) 1–35.
  • [9] C. Döbler and G. Peccati. The fourth moment theorem on the Poisson space. Ann. Probab. (2017). To appear.
  • [10] P. Eichelsbacher and C. Thäle. New Berry-Esseen bounds for non-linear functionals of Poisson random measures. Electron. J. Probab. 19 (102) (2014) 1–25.
  • [11] K. Krokowski. Poisson approximation of Rademacher functionals by the Chen-Stein method and Malliavin calculus. Commun. Stoch. Anal. 11 (2) (2017) 195–222.
  • [12] K. Krokowski, A. Reichenbachs and C. Thäle. Berry-Esseen bounds and multivariate limit theorems for functionals of Rademacher sequences. Ann. Inst. Henri Poincaré Probab. Stat. 52 (2) (2016) 763–803.
  • [13] K. Krokowski, A. Reichenbachs and C. Thäle. Discrete Malliavin–Stein method: Berry–Esseen bounds for random graphs and percolation. Ann. Probab. 45 (2) (2017) 1071–1109.
  • [14] K. Krokowski and C. Thäle. Multivariate central limit theorems for Rademacher functionals with applications. Electron. J. Probab. 22 (87) (2017) 1–30.
  • [15] M. Ledoux. Chaos of a Markov operator and the fourth moment condition. Ann. Probab. 40 (6) (2012) 2439–2459.
  • [16] E. Mossel, R. O’Donnell and K. Oleszkiewicz. Noise stability of functions with low influences: Invariance and optimality. Ann. of Math. (2) 171 (1) (2010) 295–341.
  • [17] I. Nourdin and G. Peccati. Stein’s method on Wiener chaos. Probab. Theory Related Fields 145 (1) (2009) 75–118.
  • [18] I. Nourdin and G. Peccati. Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge University Press, Cambridge, 2012.
  • [19] I. Nourdin, G. Peccati, G. Poly and R. Simone. Classical and free fourth moment theorems: Universality and thresholds. J. Theoret. Probab. 29 (2) (2016) 653–680.
  • [20] I. Nourdin, G. Peccati and G. Reinert. Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos. Ann. Probab. 38 (5) (2010) 1947–1985.
  • [21] I. Nourdin, G. Peccati and G. Reinert. Stein’s method and stochastic analysis of Rademacher functionals. Electron. J. Probab. 15 (55) (2010) 1703–1742.
  • [22] D. Nualart and G. Peccati. Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (1) (2005) 177–193.
  • [23] G. Peccati and M. Reitzner. Stochastic Analysis for Poisson Point Processes. Mathematics, Statistics, Finance and Economics. Bocconi University Press and Springer, 2016.
  • [24] G. Peccati, J. L. Solé, M. S. Taqqu and F. Utzet. Stein’s method and normal approximation of Poisson functionals. Ann. Probab. 38 (2) (2010) 443–478.
  • [25] G. Peccati and C. A. Tudor. Gaussian limits for vector-valued multiple stochastic integrals. In Séminaire de Probabilités XXXVIII 247–262. Lecture Notes in Math. 1857. Springer, Berlin, 2005.
  • [26] G. Peccati and C. Zheng. Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15 (48) (2010) 1487–1527.
  • [27] N. Privault. Stochastic analysis of Bernoulli processes. Probab. Surv. 5 (2008) 435–483.
  • [28] N. Privault and G. L. Torrisi. The Stein and Chen-Stein methods for functionals of non-symmetric Bernoulli processes. ALEA Lat. Am. J. Probab. Math. Stat. 12 (1) (2015) 309–356.
  • [29] M. Schulte. Normal approximation of Poisson functionals in Kolmogorov distance. J. Theoret. Probab. 29 (1) (2016) 96–117.
  • [30] G. Zheng. Normal approximation and almost sure central limit theorem for non-symmetric Rademacher functionals. Stochastic Process. Appl. 127 (5) (2017) 1622–1636.