Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Optimal discretization of stochastic integrals driven by general Brownian semimartingale

Emmanuel Gobet and Uladzislau Stazhynski

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study the optimal discretization error of stochastic integrals, driven by a multidimensional continuous Brownian semimartingale. In this setting we establish a pathwise lower bound for the renormalized quadratic variation of the error and we provide a sequence of discretization stopping times, which is asymptotically optimal. The latter is defined as hitting times of random ellipsoids by the semimartingale at hand. In comparison with previous available results, we allow a quite large class of semimartingales (relaxing in particular the non degeneracy conditions usually requested) and we prove that the asymptotic lower bound is attainable.


Nous étudions l’erreur de discrétisation optimale d’intégrale stochastique, dirigée par une semimartingale brownienne continue multidimensionnelle. Dans ce cadre, nous déterminons une borne inférieure trajectorielle pour la variation quadratique de l’erreur renormalisée et nous fournissons une suite de temps d’arrêt de discrétisation, suite qui est asymptotiquement optimale. Cette dernière est définie explicitement à partir des temps d’atteinte d’ellipsoïdes aléatoires par la semimartingale sous-jacente. En comparaison avec les précédents résultats, nous considérons une très grande classe de semimartingales (relâchant en particulier les conditions de non dégénérescence qui étaient habituellement requises) et nous prouvons que la borne inférieure asymptotique est atteignable.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 54, Number 3 (2018), 1556-1582.

Received: 2 January 2016
Revised: 20 March 2017
Accepted: 12 June 2017
First available in Project Euclid: 11 July 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G40: Stopping times; optimal stopping problems; gambling theory [See also 62L15, 91A60] 60F15: Strong theorems 60H05: Stochastic integrals

Discretization of stochastic integrals Hitting times Random ellipsoids Almost sure convergence


Gobet, Emmanuel; Stazhynski, Uladzislau. Optimal discretization of stochastic integrals driven by general Brownian semimartingale. Ann. Inst. H. Poincaré Probab. Statist. 54 (2018), no. 3, 1556--1582. doi:10.1214/17-AIHP848.

Export citation


  • [1] M. T. Barlow and M. Yor. Semi-martingale inequalities via the Garsia–Rodemich–Rumsey lemma, and applications to local times. J. Funct. Anal. 49 (1982) 198–229.
  • [2] J.-P. Bouchaud and M. Potters Financial applications of random matrix theory: A short review. In The Oxford Handbook of Random Matrix Theory 824–850. Oxford Univ. Press, Oxford, 2011.
  • [3] M. Fukasawa. Asymptotically efficient discrete hedging. In Stochastic Analysis with Financial Applications 331–346. Progress in Probability 65, 2011.
  • [4] M. Fukasawa. Discretization error of stochastic integrals. Ann. Appl. Probab. 21 (2011) 1436–1465.
  • [5] C. Geiss and S. Geiss. On approximation of a class of stochastic integrals and interpolation. Stoch. Stoch. Rep. 76 (4) (2004) 339–362.
  • [6] E. Gobet and N. Landon. Almost sure optimal hedging strategy. Ann. Appl. Probab. 24 (4) (2014) 1652–1690.
  • [7] E. Gobet and N. Landon. Optimization of joint $p$-variations of Brownian semimartingales. Electron. J. Probab. 19 (2014) 36.
  • [8] A. Göing-Jaeschke and M. Yor. A survey and some generalizations of Bessel processes. Bernoulli 9 (2) (2003) 313–349.
  • [9] M. Hairer, M. Hutzenthaler and A. Jentzen. Loss of regularity for Kolmogorov equations. Ann. Probab. 43 (2) (2015) 468–527.
  • [10] N. Hoffman, T. Müller-Gronbach and K. Ritter. The optimal discretization of stochastic differential equations. J. Complexity 17 (2001) 117–153.
  • [11] J. Jacod and P. Protter. Discretization of Processes. Stochastic Modelling and Applied Probability 67. Springer, Heidelberg, 2012.
  • [12] A. Jentzen, T. Müller-Gronbach and L. Yaroslavtseva. On stochastic differential equations with arbitrary slow convergence rates for strong approximation. Commun. Math. Sci. 14 (6) (2016) 1477–1500.
  • [13] P. Kree and C. Soize. Mathematics of Random Phenomena: Random Vibrations of Mechanical Structures. Springer Science & Business Media, 2012.
  • [14] T. G. Kurtz and P. Protter. Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19 (3) (1991) 1035–1070.
  • [15] J. Li, Y.-B. Peng and J.-B. Chen. Nonlinear stochastic optimal control strategy of hysteretic structures. Struct. Eng. Mech. 38 (1) (2011) 39–63.
  • [16] T. Müller-Gronbach. Strong approximation of systems of stochastic differential equations. Habilitation thesis, Technical University of Darmstadt, 2002. Available at
  • [17] H. Rootzen. Limit distributions for the error in approximations of stochastic integrals. Ann. Probab. 8 (2) (1980) 241–251.
  • [18] D. Talay. Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process. Related Fields 8 (2) (2002) 163–198.