Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Monotonicity and condensation in homogeneous stochastic particle systems

Thomas Rafferty, Paul Chleboun, and Stefan Grosskinsky

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study stochastic particle systems that conserve the particle density and exhibit a condensation transition due to particle interactions. We restrict our analysis to spatially homogeneous systems on fixed finite lattices with stationary product measures, which includes previously studied zero-range or misanthrope processes. All known examples of such condensing processes are non-monotone, i.e. the dynamics do not preserve a partial ordering of the state space and the canonical measures (with a fixed number of particles) are not monotonically ordered. For our main result we prove that condensing homogeneous particle systems with finite critical density are necessarily non-monotone. On fixed finite lattices condensation can occur even when the critical density is infinite, in this case we give an example of a condensing process that numerical evidence suggests is monotone, and give a partial proof of its monotonicity.

Résumé

Nous étudions un système de particules aléatoires qui conserve la densité et fait apparaître un phénomène de condensation en raison des interactions entre particules. Nous restreignons notre analyse au cas des systèmes homogènes en espace sur un réseau fini avec mesure stationnaire produit, ce qui inclut les cas étudiés précédemment du processus « zero-range » et du processus misanthrope. Tous les exemples connus qui montrent un phénomène de condensation sont non-monotones, c’est-à-dire que la dynamique ne préserve aucun ordre partiel sur l’espace d’états et les mesures canoniques (avec un nombre fixe de particules) ne sont pas ordonnées. Notre résultat principal montre que tout système de particules homogène avec densité critique finie qui montre un phénomène de condensation est nécessairement non monotone. Sur un réseau fini, la condensation peut apparaître même quand la densité critique est finie, dans ce cas nous donnons un exemple d’un processus avec condensation dont une étude numérique montre la monotonie, et nous donnons une preuve partielle de cette monotonie.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 54, Number 2 (2018), 790-818.

Dates
Received: 8 May 2015
Revised: 6 February 2017
Accepted: 19 February 2017
First available in Project Euclid: 25 April 2018

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1524643229

Digital Object Identifier
doi:10.1214/17-AIHP821

Mathematical Reviews number (MathSciNet)
MR3795066

Zentralblatt MATH identifier
06897968

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82C22: Interacting particle systems [See also 60K35] 82C26: Dynamic and nonequilibrium phase transitions (general)

Keywords
Stochastic particle systems Condensation Monotonicity Stationary product measures

Citation

Rafferty, Thomas; Chleboun, Paul; Grosskinsky, Stefan. Monotonicity and condensation in homogeneous stochastic particle systems. Ann. Inst. H. Poincaré Probab. Statist. 54 (2018), no. 2, 790--818. doi:10.1214/17-AIHP821. https://projecteuclid.org/euclid.aihp/1524643229


Export citation

References

  • [1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover Publications, New York, 1965.
  • [2] E. D. Andjel, P. A. Ferrari, H. Guiol and C. Landim. Convergence to the maximal invariant measure for a zero-range process with random rates. Stochastic Process. Appl. 90 (2000) 67–81.
  • [3] I. Armendáriz, S. Grosskinsky and M. Loulakis. Zero range condensation at criticality. Stochastic Process. Appl. 123 (2013) 3466–3496.
  • [4] I. Armendáriz and M. Loulakis. Thermodynamic limit for the invariant measures in supercritical zero range processes. Probab. Theory Related Fields 145 (2008) 175–188.
  • [5] I. Armendáriz and M. Loulakis. Conditional distribution of heavy tailed random variables on large deviations of their sum. Stochastic Process. Appl. 121 (2011) 1138–1147.
  • [6] C. Bahadoran, T. Mountford, K. Ravishankar and E. Saada. Supercritical behavior of asymmetric zero-range process with sitewise disorder. Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017) 766–801.
  • [7] C. Bahadoran, T. Mountford, K. Ravishankar and E. Saada. Supercriticality conditions for asymmetric zero-range process with sitewise disorder. Braz. J. Probab. Stat. 29 (2015) 313–335.
  • [8] A. Baltrunas and C. Klüppelberg. Subexponential distributions – large deviations with applications to insurance and queueing models. Aust. N. Z. J. Stat. 46 (2004) 145–154.
  • [9] I. Benjamini, P. A. Ferrari and C. Landim. Asymmetric conservative processes with random rates. Stochastic Process. Appl. 61 (1996) 181–204.
  • [10] A. Bianchi, S. Dommers and C. Giardinà. Metastability in the reversible inclusion process. Stochastic Process. Appl. 126 (2016) 1622–1680.
  • [11] V. P. Chistyakov. A theorem on sums of independent positive random variables and its applications to branching random processes. Theory Probab. Appl. 9 (1964) 640–648.
  • [12] P. Chleboun and S. Grosskinsky. Finite size effects and metastability in zero-range condensation. J. Stat. Phys. 140 (2010) 846–872.
  • [13] P. Chleboun and S. Grosskinsky. Condensation in stochastic particle systems with stationary product measures. J. Stat. Phys. 154 (2013) 432–465.
  • [14] P. Chleboun and S. Grosskinsky. A dynamical transition and metastability in a size-dependent zero-range process. J. Phys. A 48 (2015) 055001.
  • [15] J. Chover, P. Ney and S. D. Wainger. Functions of probability measures. J. Anal. Math. 26 (1973) 255–302.
  • [16] C. Cocozza-Thivent. Processus des misanthropes. Z. Wahrsch. Verw. Gebiete 70 (1985) 509–523.
  • [17] D. Denisov, A. B. Dieker and V. Shneer. Large deviations for random walks under subexponentiality: The big-jump domain. Ann. Probab. 36 (2008) 1946–1991.
  • [18] J.-M. Drouffe, C. Godrèche and F. Camia. A simple stochastic model for the dynamics of condensation. J. Phys. A: Math. Gen. 31 (1998) L19–L25.
  • [19] P. Embrechts and C. M. Goldie. On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. A 29 (1980) 243–256.
  • [20] P. Embrechts and C. M. Goldie. On convolution tails. Stochastic Process. Appl. 13 (1982) 263–278.
  • [21] M. R. Evans. Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30 (2000) 42–57.
  • [22] M. R. Evans, S. N. Majumdar and R. K. P. Zia. Factorized steady states in mass transport models. J. Phys. A: Math. Gen. 37 (2004) L275–L280.
  • [23] M. R. Evans and B. Waclaw. Condensation in stochastic mass transport models: Beyond the zero-range process. J. Phys. A 47 (2014) 095001.
  • [24] L. Fajfrova, T. Gobron and E. Saada. Invariant measures for mass migration processes. Electron. J. Probab. 21 (2016) 60.
  • [25] P. A. Ferrari, C. Landim and V. Sisko. Condensation for a fixed number of independent random variables. J. Stat. Phys. 128 (2007) 1153–1158.
  • [26] P. A. Ferrari and V. Sisko. Escape of mass in zero-range processes with random rates. In Asymptotics: Particles, Processes and Inverse Problems 108–120. IMS Lect. Notes 55 2007.
  • [27] S. Foss, D. Korshunov and S. Zachary. An Introduction to Heavy-Tailed and Subexponential Distributions. Springer, New York, 2011.
  • [28] H.-O. Georgii. Canonical Gibbs Measures. Springer, Berlin Heidelberg, 1979.
  • [29] C. Giardinà, J. Kurchan, F. Redig and K. Vafayi. Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135 (2009) 25–55.
  • [30] C. Giardinà, F. Redig and K. Vafayi. Correlation inequalities for interacting particle systems with duality. J. Stat. Phys. 141 (2010) 242–263.
  • [31] T. Gobron and E. Saada. Couplings, attractiveness and hydrodynamics for conservative particle systems. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 1132–1177.
  • [32] C. Godrèche and J. M. Luck. Condensation in the inhomogeneous zero-range process: An interplay between interaction and diffusion disorder. J. Stat. Mech. Theory Exp., 2012 (2012) P12013.
  • [33] C. M. Goldie and C. Klüppelberg. Subexponential distributions. In A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy Tailed Distributions 435–459. Birkhäuser, Boston, 1998.
  • [34] G. Grimmett and D. Stirzaker. Probability and Random Processes. OUP, Oxford, 2001.
  • [35] S. Grosskinsky, F. Redig and K. Vafayi. Dynamics of condensation in the symmetric inclusion process. Electron. J. Probab. 18 (2013) 66.
  • [36] S. Grosskinsky, G. M. Schütz and H. Spohn. Condensation in the zero range process: Stationary and dynamical properties. J. Stat. Phys. 113 (2003) 389–410.
  • [37] I. Jeon, P. March and B. Pittel. Size of the largest cluster under zero-range invariant measures. Ann. Probab. 28 (2000) 1162–1194.
  • [38] C. Klüppelberg. Subexponential distributions and characterizations of related classes. Probab. Theory Related Fields 82 (1989) 259–269.
  • [39] J. Krug and P. A. Ferrari. Phase transitions in driven diffusive systems with random rates. J. Phys. A: Math. Gen. 29 (1996) L465–L471.
  • [40] C. Landim. Hydrodynamical limit for space inhomogeneous one-dimensional totally asymmetric zero-range processes. Ann. Probab. 24 (1996) 599–638.
  • [41] D. A. Levin, Y. Peres and E. L. Wilmer. Markov Chains and Mixing Times. American Mathematical Society, Providence, 2009.
  • [42] S. N. Majumdar, S. Krishnamurthy and M. Barma. Nonequilibrium phase transitions in models of aggregation, adsorption, and dissociation. Phys. Rev. Lett. 81 (1998) 3691–3694.
  • [43] S. N. Majumdar, S. Krishnamurthy and M. Barma. Nonequilibrium phase transition in a model of diffusion, aggregation, and fragmentation. J. Stat. Phys. 99 (2000) 1–29.
  • [44] E. J. G. Pitman. Subexponential distribution functions. J. Aust. Math. Soc. A 29 (1980) 337–347.
  • [45] R. Rajesh and S. N. Majumdar. Exact phase diagram of a model with aggregation and chipping. Phys. Rev. E 63 (2001) 036114.
  • [46] F. Spitzer. Interaction of Markov processes. Adv. Math. 5 (1970) 246–290.
  • [47] M. G. Stamatakis. Hydrodynamic limit of mean zero condensing zero range processes with sub-critical initial profiles. J. Stat. Phys. 158 (2014) 87–104.
  • [48] J. L. Teugels. The class of subexponential distributions. Ann. Probab. 3 (1975) 1000–1011.
  • [49] H. Touchette. The large deviation approach to statistical mechanics. Phys. Rep. 478 (2009) 1–69.
  • [50] B. Waclaw, L. Bogacz, Z. Burda and W. Janke. Condensation in zero-range processes on inhomogeneous networks. Phys. Rev. E 76 (2007) 046114.
  • [51] B. Waclaw and M. R. Evans. Explosive condensation in a mass transport model. Phys. Rev. Lett. 108 (2012) 70601.