Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations

Bruno Bouchard, Dylan Possamaï, Xiaolu Tan, and Chao Zhou

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We provide a unified approach to a priori estimates for supersolutions of BSDEs in general filtrations, which may not be quasi left-continuous. Unlike the previous related approaches in simpler settings, our results do not only rely on a simple application of Itô’s formula and classical estimates, but use crucially appropriate generalizations of deep estimates for supermartingales obtained by Meyer. As an example of application, we prove that reflected BSDEs are well-posed in a general framework which has not been covered so far in the existing literature.


Nous proposons dans cet article une approche unifiée permettant l’obtention d’estimées a priori pour des sur-solutions d’EDSR adaptées à des filtrations générales, en particulier non nécessairement quasi-continues à gauche. Contrairement aux approches antérieures de ce problème dans des cadres plus simples, nos résultats ne sont pas la conséquence directe de la formule d’Itô et d’estimées classiques, mais dépendent de manière cruciale de versions appropriées à notre contexte d’estimées obtenues par Meyer pour des sur-martingales. Nous proposons entre autres une application de nos résultats à l’étude de l’existence et de l’unicité de solutions d’EDSR réfléchies dans un cadre général non-couvert par les résultats précédents dans la littérature.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 54, Number 1 (2018), 154-172.

Received: 24 July 2015
Revised: 15 September 2016
Accepted: 26 September 2016
First available in Project Euclid: 19 February 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H99: None of the above, but in this section

Backward SDE Supersolution Doob–Meyer decomposition Reflected backward SDE


Bouchard, Bruno; Possamaï, Dylan; Tan, Xiaolu; Zhou, Chao. A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations. Ann. Inst. H. Poincaré Probab. Statist. 54 (2018), no. 1, 154--172. doi:10.1214/16-AIHP798.

Export citation


  • [1] B. Bouchard, R. Élie and A. Réveillac. BSDEs with weak terminal condition. Ann. Probab. 43 (2) (2015) 572–604.
  • [2] B. Bouchard, D. Possamaï and X. Tan. A general Doob–Meyer–Mertens decomposition for $g$-supermartingale systems. Electron. J. Probab. 21 (36) (2015) 1–21.
  • [3] P. Briand, B. Delyon, Y. Hu, É. Pardoux and L. Stoica. $L^{p}$ solutions of backward stochastic differential equations. Stochastic Process. Appl. 108 (2003) 109–129.
  • [4] P. Briand, B. Delyon and J. Mémin. On the robustness of backward stochastic differential equations. Stochastic Process. Appl. 97 (2002) 229–253.
  • [5] J. Cvitanić, I. Karatzas and H. M. Soner. Backward stochastic differential equations with constraints on the gain-process. Ann. Probab. 26 (1998) 1522–1551.
  • [6] N. El Karoui. Les aspects probabilistes du contrôle stochastique. In Ecole d’Eté de Probabilités de Saint-Flour IX-1979 73–238. Lecture Notes in Mathematics 876, 1981.
  • [7] N. El Karoui and S.-J. Huang. A general result of existence and uniqueness of backward stochastic differential equations. In Backward Stochastic Differential Equations (Paris, 1995–1996) 27–36. Pitman Res. Notes Math. Ser. 364. Longman, Harlow, 1997.
  • [8] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.-C. Quenez. Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Appl. Probab. 25 (2) (1997) 702–737.
  • [9] N. El Karoui, S. Peng and M.-C. Quenez. Backward stochastic differential equations in finance. Math. Finance 7 (1) (1997) 1–71.
  • [10] M. Grigorova, P. Imkeller, E. Offen, Y. Ouknine and M.-C. Quenez. Reflected BSDEs when the obstacle is not right-continuous and optimal stopping. Preprint, 2015. Available at arXiv:1504.06094.
  • [11] T. Klimsiak. BSDEs with monotone generator and two irregular reflecting barriers. Bull. Sci. Math. 137 (3) (2013) 268–321.
  • [12] T. Klimsiak. Reflected BSDEs with monotone generator. Electron. J. Probab. 17 (107) (2014) 1–25.
  • [13] T. Klimsiak. Reflected BSDEs on filtered probability spaces. Stochastic Process. Appl. 125 (11) (2015) 4204–4241.
  • [14] T. Kruse and A. Popier. BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stoch. Int. J. Probab. Stoch. Process. 88 (4) (2016) 491–539.
  • [15] É. Lenglart. Tribus de Meyer et théorie des processus. Séminaire de probabilité (Strasbourg) 14 (1980) 500–546.
  • [16] É. Lenglart, D. Lépingle and M. Pratelli. Présentation unifiée de certaines inégalités de la théorie des martingales. Séminaire de probabilités (Strasbourg) 14 (1980) 26–48.
  • [17] J. P. Lepeltier and M. Xu. Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier. Statist. Probab. Lett. 75 (1) (2005) 58–66.
  • [18] Q. Lin and S. Peng. Smallest $g$-supersolutions for BSDE with continuous drift coefficients. Chin. Ann. Math. Ser. B 21B (3) (2000) 359–366.
  • [19] J. Mémin and L. Słomiński. Condition UT et stabilité en loi des solutions d’équations différentielles stochastiques. Séminaire de probabilités (Strasbourg) 25 (1991) 162–177.
  • [20] J.-F. Mertens. Théorie des processus stochastiques généraux applications, aux surmartingales. Probab. Theory Related Fields 22 (1) (1972) 45–68.
  • [21] P.-A. Meyer. Une majoration du processus croissant naturel associé à une surmartingale. Séminaire de probabilités (Strasbourg) 2 (1968) 166–170.
  • [22] A. Osȩkowski. Sharp Martingale and Semimartingale Inequalities. Birkhaüser, Basel, 2012.
  • [23] S. Peng. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyer’s type. Probab. Theory Related Fields 113 (4) (1999) 473–499.
  • [24] S. Peng and M. Xu. The smallest $g$-supermartingale and reflected BSDE with single and double $L^{2}$ obstacles. Ann. Inst. Henri Poincaré Probab. Stat. 41 (2005) 605–630.
  • [25] S. Peng and M. Xu. Constrained BSDE and viscosity solutions of variation inequalities. Preprint, 2007. Available at arXiv:0712.0306.
  • [26] S. Peng and M. Xu. Reflected BSDE with a constraint and its applications in an incomplete market. Bernoulli 16 (3) (2010) 614–640.
  • [27] D. Possamaï, X. Tan and C. Zhou. Stochastic control for a class of nonlinear stochastic kernels and applications. Preprint, 2015. Available at arXiv:1510.08439.
  • [28] M. Schweizer. Approximating random variables by stochastic integrals. Ann. Appl. Probab. 22 (3) (1994) 1536–1575.
  • [29] M. Soner, N. Touzi and J. Zhang. Wellposedness of second order backward SDEs. Probab. Theory Related Fields 153 (1–2) (2012) 149–190.