Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Infinite systems of competing Brownian particles

Andrey Sarantsev

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Consider a system of infinitely many Brownian particles on the real line. At any moment, these particles can be ranked from the bottom upward. Each particle moves as a Brownian motion with drift and diffusion coefficients depending on its current rank. The gaps between consecutive particles form the (infinite-dimensional) gap process. We find a stationary distribution for the gap process. We also show that if the initial value of the gap process is stochastically larger than this stationary distribution, this process converges back to this distribution as time goes to infinity. This continues the work by Pal and Pitman (Ann. Appl. Probab. 18 (2008) 2179–2207). Also, this includes infinite systems with asymmetric collisions, similar to the finite ones from Karatzas, Pal and Shkolnikov (Ann. Inst. H. Poincare 52 (2016) 323–354).


Nous considérons un système infini de particules browniennes sur la droite réelle. À tout moment ces particules peuvent être ordonnées de façon croissante. Chaque particule se déplace suivant un mouvement brownien dont les coefficients de dérive et de diffusion dépendent du rang de la particule. Les distances entre les particules successives forment le processus (infini dimensionnel) des écarts. Nous trouvons une mesure stationnaire du processus des écarts. Nous montrons aussi que si la distribution initiale du processus des écarts domine stochastiquement la distribution stationnaire, le processus converge vers cette distribution en grand temps. Ce travail poursuit donc l’étude de Pal et Pitman (Ann. Appl. Probab. 18 (2008) 2179–2207). Il inclut aussi le cas des systèmes infinis avec collisions asymétriques, similaire au cas fini de Karatzas et Shkolnikov (Ann. Inst. H. Poincare 52 (2016) 323–354).

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 53, Number 4 (2017), 2279-2315.

Received: 8 September 2015
Revised: 30 August 2016
Accepted: 3 September 2016
First available in Project Euclid: 27 November 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60J60: Diffusion processes [See also 58J65] 60J65: Brownian motion [See also 58J65] 60H10: Stochastic ordinary differential equations [See also 34F05] 91B26: Market models (auctions, bargaining, bidding, selling, etc.)

Reflected Brownian motion Competing Brownian particles Asymmetric collisions Interacting particle systems Weak convergence Stochastic comparison Triple collisions Stationary distribution


Sarantsev, Andrey. Infinite systems of competing Brownian particles. Ann. Inst. H. Poincaré Probab. Statist. 53 (2017), no. 4, 2279--2315. doi:10.1214/16-AIHP791.

Export citation


  • [1] R. Arratia. The motion of a tagged particle in the simple symmetric exclusion system on $\mathbb{Z}$. Ann. Probab. 11 (2) (1983) 362–373.
  • [2] A. D. Banner, E. R. Fernholz and I. Karatzas. Atlas models of equity markets. Ann. Appl. Probab. 15 (4) (2005) 2296–2330.
  • [3] A. D. Banner, E. R. Fernholz, T. Ichiba, I. Karatzas and V. Papathanakos. Hybrid atlas models. Ann. Appl. Probab. 21 (2) (2011) 609–644.
  • [4] R. Bass and E. Pardoux. Uniqueness for diffusions with piecewise constant coefficients. Probab. Theory Related Fields 76 (4) (1987) 557–572.
  • [5] C. Bruggeman and A. Sarantsev. Multiple collisions in systems of competing Brownian particles. Bernoulli. To appear, 2016. Available at arXiv:1309.2621.
  • [6] H. Chen. A sufficient condition for the positive recurrence of a semimartingale reflecting Brownian motion in an orthant. Ann. Appl. Probab. 6 (3) (1996) 758–765.
  • [7] A. Dembo, M. Shkolnikov, S. R. Srinivasa Varahna and O. Zeitouni. Large deviations for diffusions interacting through their ranks. Comm. Pure Appl. Math. 69 (7) (2016) 1259–1313.
  • [8] A. Dembo and L.-C. Tsai. Equilibrium fluctuations of the Atlas model, 2015. Available at arXiv:1503.03581.
  • [9] W. Feller. An Introduction to Probability Theory and Its Applications, 1, 3rd edition. Wiley, New York, 1968.
  • [10] E. R. Fernholz. Stochastic Portfolio Theory. Applications of Mathematics 48. Springer, Berlin, 2002.
  • [11] E. R. Fernholz, T. Ichiba and I. Karatzas. A second-order stock market model. Ann. Finance 9 (3) (2013) 439–454.
  • [12] E. R. Fernholz, T. Ichiba, I. Karatzas and V. Prokaj. Planar diffusions with rank-based characteristics and perturbed Tanaka equations. Probab. Theory Related Fields 156 (1–2), (2013) 343–374.
  • [13] E. R. Fernholz and I. Karatzas. Stochastic Portfolio Theory: An Overview. Handbook of Numerical Analysis: Mathematical Modeling and Numerical Methods in Finance, 89–168. Elsevier, Amsterdam, 2009.
  • [14] P. L. Ferrari. Limit theorems for tagged particles. Markov Process. Related Fields 2 (1) (1996) 17–40.
  • [15] P. L. Ferrari and L. R. G. Fontes. The net output process of a system with infinitely many queues. Ann. Appl. Probab. 4 (4) (1994) 1129–1144.
  • [16] T. E. Harris. Diffusions with collisions between particles. J. Appl. Probab. 2 (1965) 323–338.
  • [17] T. Ichiba and I. Karatzas. On collisions of Brownian particles. Ann. Appl. Probab. 20 (3) (2010) 951–977.
  • [18] T. Ichiba, I. Karatzas and M. Shkolnikov. Strong solutions of stochastic equations with rank-based coefficients. Probab. Theory Related Fields 156 (2013) 229–248.
  • [19] T. Ichiba, S. Pal and M. Shkolnikov. Convergence rates for rank-based models with applications to portfolio theory. Probab. Theory Related Fields 156 (2013) 415–448.
  • [20] B. Jourdain and F. Malrieu. Propagation of chaos and Poincare inequalities for a system of particles interacting through their CDF. Ann. Appl. Probab. 18 (5) (2008) 1706–1736.
  • [21] B. Jourdain and J. Reygner. Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation. SPDE Anal. Comp. 1 (3) (2013) 455–506.
  • [22] I. Karatzas, S. Pal and M. Shkolnikov. Systems of Brownian particles with asymmetric collisions. Ann. Inst. H. Poincare 52 (1) (2016) 323–354.
  • [23] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer, Berlin, 1991.
  • [24] C. Kipnis. Central limit theorems for infinite series of queues and applications to simple exclusion processes. Stochastic Process. Appl. 14 (2) (1986) 397–408.
  • [25] N. O’Connell and M. Yor. Brownian analogues of Burke’s theorem. Stochastic Process. Appl. 96 (2) (2001) 285–304.
  • [26] S. Pal and J. Pitman. One-dimensional Brownian particle systems with rank-dependent drifts. Ann. Appl. Probab. 18 (6) (2008) 2179–2207.
  • [27] I. M. Reiman and R. J. Williams. A boundary property of semimartingale reflecting Brownian motions. Probab. Theory Related Fields 77 (1) (1988) 87–97.
  • [28] J. Reygner. Chaoticity of the stationary distribution of rank-based interacting diffusions. Electron. Commun. Probab. 20 (60) (2015) 1–20.
  • [29] A. Sarantsev. Comparison techniques for competing Brownian particles. J. Th. Probab. To appear, 2015. Available at arXiv:1305.1653.
  • [30] A. Sarantsev. Triple and simultaneous collisions of competing Brownian particles. Electron. J. Probab. 20 (29) (2015) 1–28.
  • [31] A. Sarantsev. Two-sided infinite systems of competing Brownian particles, 2015. Available at arXiv:1509.01859.
  • [32] A. Sarantsev. Penalty method for obliquely reflected diffusions, 2016. Available at arXiv:1509.01777.
  • [33] T. Seppalainen. A scaling limit for queues in series. Ann. Appl. Probab. 7 (4) (1997) 855–872.
  • [34] M. Shkolnikov. Competing particle systems evolving by interacting Lévy processes. Ann. Appl. Probab. 21 (5) (2011) 1911–1932.
  • [35] M. Shkolnikov. Large systems of diffusions interacting through their ranks. Stochastic Process. Appl. 122 (4) (2012) 1730–1747.
  • [36] D. W. Stroock. Probability Theory. An Analytic View, 2nd edition. Cambridge University Press, Cambridge, 2011.
  • [37] A.-S. Sznitman. A propagation of chaos result for Burgers’ equation. Probab. Theory Related Fields 71 (4) (1986) 581–613.
  • [38] L.-C. Tsai and A. Sarantsev. Stationary gap distributions for infinite systems of competing Brownian particles, 2016. Available at arXiv:1608.00628.
  • [39] R. J. Williams. Semimartingale reflecting Brownian motions in the orthant. Stochastic networks. In IMA Vol. Math. Appl. 125–137, 71. Springer, Berlin, 1995.