Abstract
Consider a system of infinitely many Brownian particles on the real line. At any moment, these particles can be ranked from the bottom upward. Each particle moves as a Brownian motion with drift and diffusion coefficients depending on its current rank. The gaps between consecutive particles form the (infinite-dimensional) gap process. We find a stationary distribution for the gap process. We also show that if the initial value of the gap process is stochastically larger than this stationary distribution, this process converges back to this distribution as time goes to infinity. This continues the work by Pal and Pitman (Ann. Appl. Probab. 18 (2008) 2179–2207). Also, this includes infinite systems with asymmetric collisions, similar to the finite ones from Karatzas, Pal and Shkolnikov (Ann. Inst. H. Poincare 52 (2016) 323–354).
Nous considérons un système infini de particules browniennes sur la droite réelle. À tout moment ces particules peuvent être ordonnées de façon croissante. Chaque particule se déplace suivant un mouvement brownien dont les coefficients de dérive et de diffusion dépendent du rang de la particule. Les distances entre les particules successives forment le processus (infini dimensionnel) des écarts. Nous trouvons une mesure stationnaire du processus des écarts. Nous montrons aussi que si la distribution initiale du processus des écarts domine stochastiquement la distribution stationnaire, le processus converge vers cette distribution en grand temps. Ce travail poursuit donc l’étude de Pal et Pitman (Ann. Appl. Probab. 18 (2008) 2179–2207). Il inclut aussi le cas des systèmes infinis avec collisions asymétriques, similaire au cas fini de Karatzas et Shkolnikov (Ann. Inst. H. Poincare 52 (2016) 323–354).
Citation
Andrey Sarantsev. "Infinite systems of competing Brownian particles." Ann. Inst. H. Poincaré Probab. Statist. 53 (4) 2279 - 2315, November 2017. https://doi.org/10.1214/16-AIHP791
Information