Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome?

Daniel Ahlberg and Jeffrey E. Steif

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Consider a monotone Boolean function $f:\{0,1\}^{n}\to\{0,1\}$ and the canonical monotone coupling $\{\eta_{p}:p\in[0,1]\}$ of an element in $\{0,1\}^{n}$ chosen according to product measure with intensity $p\in[0,1]$. The random point $p\in[0,1]$ where $f(\eta_{p})$ flips from $0$ to $1$ is often concentrated near a particular point, thus exhibiting a threshold phenomenon. For a sequence of such Boolean functions, we peer closely into this threshold window and consider, for large $n$, the limiting distribution (properly normalized to be nondegenerate) of this random point where the Boolean function switches from being 0 to 1. We determine this distribution for a number of the Boolean functions which are typically studied and pay particular attention to the functions corresponding to iterated majority and percolation crossings. It turns out that these limiting distributions have quite varying behavior. In fact, we show that any nondegenerate probability measure on $\mathbb{R}$ arises in this way for some sequence of Boolean functions.

Résumé

Soit $f:\{0,1\}^{n}\to\{0,1\}$ une fonction booléenne monotone, et $\{\eta_{p}:p\in[0,1]\}$ le couplage monotone canonique d’éléments de $\{0,1\}^{n}$ choisis selon la mesure produit d’intensité $p\in[0,1]$. Le point aléatoire $p\in[0,1]$ en lequel $f(\eta_{p})$ bascule de $0$ à $1$ est souvent concentré près d’une valeur particulière, présentant ainsi un effet de seuil. Pour une suite de telles fonctions booléennes, nous étudions de plus près la fenêtre de seuil correspondante en considérant la loi limite lorsque $n$ tend vers l’infini (proprement normalisée pour être non-dégénérée) de ce point aléatoire critique où la fonction booléenne bascule. Nous déterminons cette loi pour de nombreuses fonctions booléennes classiques, en portant une attention particulière aux cas de la majorité itérée et des croisements de percolation. Il se trouve que ces lois limites ont des comportements d’une grande variété : en fait, nous montrons que toute mesure de probabilité non-dégénérée sur $\mathbb{R}$ peut être obtenue de cette façon à partir d’une suite bien choisie de fonctions booléennes.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 53, Number 4 (2017), 2135-2161.

Dates
Received: 24 August 2015
Revised: 11 August 2016
Accepted: 12 August 2016
First available in Project Euclid: 27 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1511773741

Digital Object Identifier
doi:10.1214/16-AIHP786

Mathematical Reviews number (MathSciNet)
MR3729650

Zentralblatt MATH identifier
06847077

Subjects
Primary: 06E30: Boolean functions [See also 94C10] 60F20: Zero-one laws 60F99: None of the above, but in this section 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Boolean functions Sharp thresholds Influences Iterated majority function Near-critical percolation

Citation

Ahlberg, Daniel; Steif, Jeffrey E. Scaling limits for the threshold window: When does a monotone Boolean function flip its outcome?. Ann. Inst. H. Poincaré Probab. Statist. 53 (2017), no. 4, 2135--2161. doi:10.1214/16-AIHP786. https://projecteuclid.org/euclid.aihp/1511773741


Export citation

References

  • [1] M. Aizenman. On the number of incipient spanning clusters. Nuclear Phys. B 485 (3) (1997) 551–582.
  • [2] I. Benjamini, G. Kalai and O. Schramm. Noise sensitivity of Boolean functions and applications to percolation. Publ. Math. Inst. Hautes Études Sci. 90 (1999) 5–43.
  • [3] B. Bollobás. Random Graphs, 2nd edition. Cambridge Studies in Advanced Mathematics 73. Cambridge University Press, Cambridge, 2001.
  • [4] B. Bollobás and A. Thomason. Threshold functions. Combinatorica 7 (1) (1987) 35–38.
  • [5] C. Borgs, J. T. Chayes, R. van der Hofstad, G. Slade and J. Spencer. Random subgraphs of finite graphs. I. The scaling window under the triangle condition. Random Structures Algorithms 27 (2) (2005) 137–184.
  • [6] C. Borgs, J. T. Chayes, R. van der Hofstad, G. Slade and J. Spencer. Random subgraphs of finite graphs. II. The lace expansion and the triangle condition. Ann. Probab. 33 (5) (2005) 1886–1944.
  • [7] J. Bourgain and G. Kalai. Influences of variables and threshold intervals under group symmetries. Geom. Funct. Anal. 7 (3) (1997) 438–461.
  • [8] H. Duminil-Copin. Limit of the Wulff crystal when approaching critically for site percolation on the triangular lattice. Electron. Commun. Probab. 18 (93) (2013) 9.
  • [9] R. Durrett. Probability: Theory and Examples, 4th edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
  • [10] E. M. Elçi. Personal communication, 2016.
  • [11] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960) 17–61.
  • [12] R. Fitzner and R. van der Hofstad. Nearest-neighbor percolation function is continuous for $d>10$. Preprint. Available at arXiv:1506.07977.
  • [13] E. Friedgut. Sharp thresholds of graph properties, and the $k$-sat problem. J. Amer. Math. Soc. 12 (4) (1999) 1017–1054. With an appendix by Jean Bourgain.
  • [14] E. Friedgut and G. Kalai. Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc. 124 (10) (1996) 2993–3002.
  • [15] C. Garban, G. Pete and O. Schramm. Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc. 26 (4) (2013) 939–1024.
  • [16] C. Garban, G. Pete and O. Schramm. The scaling limits of near-critical and dynamical percolation. Preprint. Available at arXiv:1305.5526.
  • [17] C. Garban and J. E. Steif. Noise sensitivity and percolation. In Probability and Statistical Physics in Two and More Dimensions 49–154. Clay Math. Proc. 15. Amer. Math. Soc., Providence, RI, 2012.
  • [18] C. Garban and J. E. Steif. Noise Sensitivity of Boolean Functions and Percolation. Cambridge University Press, Cambridge, 2015.
  • [19] G. Grimmett. Percolation, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer-Verlag, Berlin, 1999.
  • [20] A. Hammond, E. Mossel and G. Pete. Exit time tails from pairwise decorrelation in hidden Markov chains, with applications to dynamical percolation. Electron. J. Probab. 17 (68) (2012) 16.
  • [21] T. Hara. Mean-field critical behaviour for correlation length for percolation in high dimensions. Probab. Theory Related Fields 86 (3) (1990) 337–385.
  • [22] T. Hara and G. Slade. Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys. 128 (1990) 333–391.
  • [23] T. Hara and G. Slade. The scaling limit of the incipient infinite cluster in high-dimensional percolation, II. Integrated super-Brownian excursion. J. Math. Phys. 41 (3) (2000) 1244–1293.
  • [24] M. Heydenreich and R. van der Hofstad. Random graph asymptotics on high-dimensional tori. Comm. Math. Phys. 270 (2) (2007) 335–358.
  • [25] M. Heydenreich and R. van der Hofstad. Random graph asymptotics on high-dimensional tori II: Volume, diameter and mixing time. Probab. Theory Related Fields 149 (3–4) (2011) 397–415.
  • [26] M. Heydenreich and R. van der Hofstad. Progress in high-dimensional percolation and random graphs. Lecture notes for the CRM-PIMS Summer School in Probability 2015. Available at http://www.win.tue.nl/~rhofstad/survey-high-d-percolation.pdf.
  • [27] M. Heydenreich, R. van der Hofstad and T. Hulshof. Random walk on the high-dimensional IIC. Comm. Math. Phys. 329 (1) (2014) 57–115.
  • [28] M. Heydenreich, R. van der Hofstad, T. Hulshof and G. Miermont. Backbone scaling limit of the high-dimensional IIC. In preparation.
  • [29] R. van der Hofstad and A. A. Járai. The incipient infinite cluster for high-dimensional unoriented percolation. J. Stat. Phys. 114 (3–4) (2004) 625–663.
  • [30] R. van der Hofstad and A. Sapozhnikov. Cycle structure of percolation on high-dimensional tori. Ann. Inst. Henri Poincaré Probab. Stat. 50 (3) (2014) 999–1027.
  • [31] J. Kahn, G. Kalai and N. Linial. The influence of variables on Boolean functions. In 29th Annual Symposium on Foundations of Computer Science 68–80, 1988.
  • [32] G. Kalai and S. Safra. Threshold phenomena and influence: Perspectives from mathematics, computer science, and economics. In Computational Complexity and Statistical Physics 25–60. St. Fe Inst. Stud. Sci. Complex. Oxford Univ. Press, New York, 2006.
  • [33] R. Kenna and B. Berche. Universal finite-size scaling for percolation theory in high dimensions. Preprint. Available at arXiv:1606.00315.
  • [34] H. Kesten. Scaling relations for $2$D-percolation. Comm. Math. Phys. 109 (1) (1987) 109–156.
  • [35] G. Kozma. Personal communication, 2016.
  • [36] G. Kozma and A. Nachmias. The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178 (2009) 635–654.
  • [37] G. Kozma and A. Nachmias. Arm exponents in high dimensional percolation. J. Amer. Math. Soc. 24 (2) (2011) 375–409.
  • [38] R. P. Langlands. The renormalization fixed point as a mathematical object. In Twenty Years of Bialowieza: A Mathematical Anthology 185–216. World Sci. Monogr. Ser. Math. 8. World Sci. Publ., Hackensack, NJ, 2005.
  • [39] R. P. Langlands and M.-A. Lafortune. Finite models for percolation. In Representation Theory and Analysis on Homogeneous Spaces (New Brunswick, NJ, 1993) 227–246. Contemp. Math. 177. Amer. Math. Soc., Providence, RI, 1994.
  • [40] T. Łuczak. Random trees and random graphs. Random Structures Algorithms 13 (1998) 485–500. In Proceedings of the Eighth International Conference “Random Structures and Algorithms” (Poznan, 1997).
  • [41] E. Mossel and R. O’Donnell. On the noise sensitivity of monotone functions. Random Structures Algorithms 23 (3) (2003) 333–350.
  • [42] A. Nachmias and Y. Peres. The critical random graph, with martingales. Israel J. Math. 176 (1) (2010) 29–41.
  • [43] P. Nolin. Near-critical percolation in two dimensions. Electron. J. Probab. 13 (55) (2008) 1562–1623.
  • [44] R. O’Donnell, M. Saks, O. Schramm and R. Servedio. Every decision tree has an influential variable. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), 31–39, 2005.
  • [45] G. Pete. How long could it take to establish a crossing in dynamical percolation? Talk at MFO, Oberwolfach, September 2012. Available at http://www.math.bme.hu/~gabor/DynExitOwolfach.pdf.
  • [46] R. Rossignol. Arbitrary threshold widths for monotone, symmetric properties. J. Appl. Probab. 44 (1) (2007) 164–180.
  • [47] L. Russo. An approximate zero-one law. Z. Wahrsch. Verw. Gebiete 61 (1) (1982) 129–139.
  • [48] O. Schramm and S. Smirnov. On the scaling limits of planar percolation. Ann. Probab. 39 (5) (2011) 1768–1814. With an appendix by Christophe Garban.
  • [49] O. Schramm and J. Steif. Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math. (2) 171 (2) (2010) 619–672.
  • [50] G. Slade. Scaling limits and super-Brownian motion. Notices Amer. Math. Soc. 49 (9) (2002) 1056–1067.
  • [51] S. Smirnov and W. Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 (5–6) (2001) 729–744.
  • [52] M. Talagrand. On Russo’s approximate zero-one law. Ann. Probab. 22 (3) (1994) 1576–1587.
  • [53] W. Werner. Lectures on two-dimensional critical percolation. In Statistical Mechanics 297–360. IAS/Park City Math. Ser. 16. Amer. Math. Soc., Providence, RI, 2009.