Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Overcrowding asymptotics for the $\operatorname{Sine}_{\beta}$ process

Diane Holcomb and Benedek Valkó

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We give overcrowding estimates for the $\operatorname{Sine}_{\beta}$ process, the bulk point process limit of the Gaussian $\beta$-ensemble. We show that the probability of having exactly $n$ points in a fixed interval is given by $e^{-\frac{\beta}{2}n^{2}\log(n)+\mathcal{O}(n^{2})}$ as $n\to\infty$. We also identify the next order term in the exponent if the size of the interval goes to zero.


Nous obtenons des résultats asymptotiques pour le surpeuplement du processus $\operatorname{Sine}_{\beta}$, le processus ponctuel limite dans le milieu du spectre de l’ensemble $\beta$-gaussien. Nous montrons que la probabilité d’observer $n$ points dans un interval fixé est donné par la formule $e^{-\frac{\beta}{2}n^{2}\log(n)+\mathcal{O}(n^{2})}$ quand $n\to\infty$. Nous obtenons aussi une approximation jusqu’à l’ordre suivant lorsque la longueur de l’interval tend vers $0$.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 53, Number 3 (2017), 1181-1195.

Received: 30 June 2015
Revised: 3 March 2016
Accepted: 10 March 2016
First available in Project Euclid: 21 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52) 60F10: Large deviations 15B52: Random matrices

$\beta$-ensembles Random matrices Overcrowding


Holcomb, Diane; Valkó, Benedek. Overcrowding asymptotics for the $\operatorname{Sine}_{\beta}$ process. Ann. Inst. H. Poincaré Probab. Statist. 53 (2017), no. 3, 1181--1195. doi:10.1214/16-AIHP752.

Export citation


  • [1] G. Akemann and E. Strahov. Hole probabilities and overcrowding estimates for products of complex Gaussian matrices. J. Stat. Phys. 151 (6) (2013) 987–1003.
  • [2] G. Akemann, J. Ipsen and E. Strahov. Permanental processes from products of complex and quaternionic induced Ginibre ensembles. Random Matrices Theory Appl. 3 (4) (2014) 1450014.
  • [3] G. Anderson, A. Guionnet and O. Zeitouni. Introduction to Random Matrices. Cambridge University Press, Cambridge, 2009.
  • [4] E. L. Basor, C. A. Tracy and H. Widom. Asymptotics of level-spacing distributions for random matrices. Phys. Rev. Lett. 69 (1) (1992) 5–8.
  • [5] P. Bourgade, L. Erdős, H.-T. Yau and J. Yin. Fixed energy universality for generalized Wigner matrices, 2014. Available at arXiv:1407.5606.
  • [6] F. J. Dyson. Statistical theory of energy levels of complex systems II. J. Math. Phys. 3 (1962) 157–165.
  • [7] L. Erdős, B. Schlein and H.-T. Yau. Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. IMRN 3 (2010) 436–479.
  • [8] M. M. Fogler and B. I. Shklovskii. Probability of an eigenvalue number fluctuation in an interval of a random matrix spectrum. Phys. Rev. Lett. 74 (17) (1995) 3312–3315.
  • [9] P. J. Forrester. Log-Gases and Random Matrices. London Mathematical Society Monographs Series 34. Princeton University Press, Princeton, NJ, 2010.
  • [10] D. Holcomb and B. Valkó. Large deviations for the $\operatorname{Sine}_{\beta}$ and $\operatorname{Sch}_{\tau}$ processes. Probab. Theory Related Fields 163 (2015) 339–378.
  • [11] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer-Verlag, New York, 1991.
  • [12] M. Krishnapur. Overcrowding estimates for zeroes of planar and hyperbolic Gaussian analytic functions. J. Stat. Phys. 124 (2006) 1399–1423.
  • [13] M. L. Mehta. Random Matrices. Pure and Applied Mathematics (Amsterdam) 142. Elsevier/Academic Press, Amsterdam, 2004.
  • [14] B. Valkó and B. Virág. Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177 (2009) 463–508.
  • [15] B. Valkó and B. Virág. Large gaps between random eigenvalues. Ann. Probab. 38 (3) (2010) 1263–1279.