Abstract
We prove that crossing probabilities for the critical planar Ising model with free boundary conditions are conformally invariant in the scaling limit, a phenomenon first investigated numerically by Langlands, Lewis and Saint-Aubin (J. Stat. Phys. 98 (2000) 131–244). We do so by establishing the convergence of certain exploration processes towards $\operatorname{SLE}(3,\frac{-3}{2},\frac{-3}{2})$. We also construct an exploration tree for free boundary conditions, analogous to the one introduced by Sheffield (Duke Math. J. 147 (2009) 79–129).
Nous prouvons que les probabilités de croisement pour le modèle d’Ising planaire critique avec conditions aux bords libres sont invariantes conformes à la limite d’échelle, un phénomène initialement étudié numériquement par Langlands, Lewis et Saint-Aubin (J. Stat. Phys. 98 (2000) 131–244). Pour ce faire, nous établissons la convergence de certains processus d’exploration vers $\operatorname{SLE}(3,\frac{-3}{2},\frac{-3}{2})$. Nous construisons également un arbre d’exploration pour les conditions aux bords libres, similaire à l’arbre d’exploration introduit par Sheffield (Duke Math. J. 147 (2009) 79–129).
Citation
Stéphane Benoist. Hugo Duminil-Copin. Clément Hongler. "Conformal invariance of crossing probabilities for the Ising model with free boundary conditions." Ann. Inst. H. Poincaré Probab. Statist. 52 (4) 1784 - 1798, November 2016. https://doi.org/10.1214/15-AIHP698
Information