Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

The scaling limit of random outerplanar maps

Alessandra Caraceni

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with $n$ vertices suitably rescaled by a factor $1/\sqrt{n}$ converge in the Gromov–Hausdorff sense to ${7\sqrt{2}}/{9}$ times Aldous’ Brownian tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse (J. Graph Algorithms Appl. 9 (2005) 185–204).

Résumé

Une carte planaire est dite outerplanaire si tous ses sommets appartiennent à la même face. Nous montrons que les cartes outerplanaires aléatoires uniformes à $n$ sommets, multipliées par le facteur d’échelle $1/\sqrt{n}$, convergent au sens de Gromov–Hausdorff vers ${7\sqrt{2}}/{9}$ fois l’arbre Brownien d’Aldous. La preuve utilise la bijection de Bonichon, Gavoille et Hanusse (J. Graph Algorithms Appl. 9 (2005) 185–204).

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 52, Number 4 (2016), 1667-1686.

Dates
Received: 17 May 2014
Revised: 24 February 2015
Accepted: 16 June 2015
First available in Project Euclid: 17 November 2016

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1479373244

Digital Object Identifier
doi:10.1214/15-AIHP694

Mathematical Reviews number (MathSciNet)
MR3573291

Zentralblatt MATH identifier
1384.60032

Subjects
Primary: 60C05: Combinatorial probability 60F05: Central limit and other weak theorems

Keywords
Random outerplanar maps Scaling limits Galton–Watson trees Brownian continuum random tree Gromov–Hausdorff topology

Citation

Caraceni, Alessandra. The scaling limit of random outerplanar maps. Ann. Inst. H. Poincaré Probab. Statist. 52 (2016), no. 4, 1667--1686. doi:10.1214/15-AIHP694. https://projecteuclid.org/euclid.aihp/1479373244


Export citation

References

  • [1] L. Addario-Berry, N. Broutin and C. Goldschmidt. The continuum limit of critical random graphs. Probab. Theory Related Fields 152 (3–4) (2012) 367–406.
  • [2] M. Albenque and J.-F. Marckert. Some families of increasing planar maps. Electron. J. Probab. 13 (56) (2008) 1624–1671.
  • [3] D. Aldous. The continuum random tree. I. Ann. Probab. 19 (1) (1991) 1–28.
  • [4] D. Aldous. The Continuum Random Tree II: An Overview. London Mathematical Society Lecture Note Series. Cambridge Univ. Press, Cambridge, 1991.
  • [5] D. Aldous. The continuum random tree. III. Ann. Probab. 21 (1) (1993) 248–289.
  • [6] J. Bettinelli. Scaling limit of random planar quadrangulations with a boundary. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2) (2015) 432–477.
  • [7] N. Bonichon, C. Gavoille and N. Hanusse. Canonical decomposition of outerplanar maps and application to enumeration, coding and generation. J. Graph Algorithms Appl. 9 (2) (2005) 185–204.
  • [8] J. Bouttier and E. Guitter. Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop. J. Phys. A 42 (46) (2009) 465208.
  • [9] G. Chartrand and F. Harary. Planar permutation graphs. Ann. Inst. Henri Poincaré Probab. Stat. 3 (4) (1967) 433–438.
  • [10] N. Curien, B. Haas and I. Kortchemski. The CRT is the scaling limit of random dissections. Random Structures Algorithms 47 (2) (2015) 304–327.
  • [11] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Springer, Berlin, 2010.
  • [12] B. Haas and G. Miermont. Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees. Ann. Probab. 40 (6) (2012) 2589–2666.
  • [13] S. Janson and S. Ö. Stefánsson. Scaling limits of random planar maps with a unique large face. Ann. Probab. 43 (3) (2015) 1045–1081.
  • [14] J.-F. Le Gall. Random trees and applications. Probab. Surv. 2 (2005) 245–311.
  • [15] J.-F. Le Gall. Uniqueness and universality of the Brownian map. Ann. Probab. 41 (4) (2013) 2880–2960.
  • [16] R. Lyons and Y. Peres. Probability on Trees and Networks. Cambridge Univ. Press, Cambridge. To appear, 2016. Available at http://pages.iu.edu/~rdlyons/.
  • [17] J.-F. Marckert and A. Panholzer. Noncrossing trees are almost conditioned Galton–Watson trees. Random Structures Algorithms 20 (1) (2002) 115–125.
  • [18] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 (2) (2013) 319–401.
  • [19] K. Panagiotou, B. Stufler and K. Weller. Scaling limits of random graphs from subcritical classes. Ann. Probab. 44 (5) (2016) 3291–3334.
  • [20] M. M. Sysło. Characterizations of outerplanar graphs. Discrete Math. 26 (1) (1979) 47–53.