Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Strong Feller properties for degenerate SDEs with jumps

Zhao Dong, Xuhui Peng, Yulin Song, and Xicheng Zhang

Full-text: Open access


Under full Hörmander’s conditions, we prove the strong Feller property of the semigroup determined by an SDE driven by additive subordinate Brownian motions, where the drift is allowed to be arbitrary growth. For this, we extend a criterion due to Malicet and Poly (J. Funct. Anal. 264 (2013) 2077–2096) and Bally and Caramellino (Electron. J. Probab. 19 (2014) 1–33) about the convergence of the laws of Wiener functionals in total variation. Moreover, the example of a chain of coupled oscillators is verified.


Sous des conditions de Hörmander fortes, nous prouvons la propriété forte de Feller pour le semi-groupe déterminé par une SDE dirigée par des mouvements browniens subordonnés additifs, où la dérive est autorisée à être arbitrairement croissante. Pour cela, nous étendons un critère dû à Malicet et Poly (J. Funct. Anal. 264 (2013) 2077–2096) et à Bally et Caramellino (Electron. J. Probab. 19 (2014) 1–33) sur la convergence, en variation totale, des lois de fonctionnelles de Wiener. Ce résultat couvre le cas d’une chaîne d’oscillateurs couplés.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 52, Number 2 (2016), 888-897.

Received: 12 February 2014
Revised: 20 October 2014
Accepted: 23 October 2014
First available in Project Euclid: 4 May 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Strong Feller property SDE Malliavin’s calculus Cylindrical $\alpha$-stable process Hörmander’s condition


Dong, Zhao; Peng, Xuhui; Song, Yulin; Zhang, Xicheng. Strong Feller properties for degenerate SDEs with jumps. Ann. Inst. H. Poincaré Probab. Statist. 52 (2016), no. 2, 888--897. doi:10.1214/14-AIHP658.

Export citation


  • [1] R. A. Adams and J. F. Fournier. Sobolev Spaces, 2nd edition. Academic Press, Amsterdam, 2003.
  • [2] V. Bally and L. Caramellino. On the distances between probability density functions. Electron. J. Probab. 19 (2014) 1–33.
  • [3] V. I. Bogachev. Differentiable Measures and the Malliavin Calculus. Mathematical Surveys and Monographs 164. Amer. Math. Soc., Providence, RI, 2010.
  • [4] K. Bichteler, J. B. Gravereaux and J. Jacod. Malliavin Calculus for Processes with Jumps. Gordan and Breach Science Publishers, New York, 1987.
  • [5] J. M. Bismut. Calcul des variations stochastiques et processus de sauts. Z. Wahrsch. Verw. Gebiete 63 (1983) 147–235.
  • [6] J. M. Bismut. Large Deviations and the Malliavin Calculus. Birkhäuser, Boston, 1984.
  • [7] P. Carmona. Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths. Stochastic Process. Appl. 117 (8) (2007) 1076–1092.
  • [8] T. Cass. Smooth densities for stochastic differential equations with jumps. Stochastic Process. Appl. 119 (5) (2009) 1416–1435.
  • [9] G. Da Prato and J. Zabczyk. Ergodicity for Infinite Dimensional Systems. London Math. Society Lecture Notes Series 229. Cambridge Univ. Press, Cambridge, 1996.
  • [10] J. P. Eckmann and M. Hairer. Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Comm. Math. Phys. 212 (1) (2000) 105–164.
  • [11] K. D. Elworthy and X. M. Li. Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125 (1994) 252–286.
  • [12] E. Fournié, J. M. Lasry, J. Lebuchoux, P. L. Lions and N. Touzi. Applications of Malliavin calculus to Monte Carlo methods in finance. Finance Stoch. 3 (1999) 391–412.
  • [13] Y. Ishikawa and H. Kunita. Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps. Stochastic Process. Appl. 116 (2006) 1743–1769.
  • [14] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. I. In Stochastic Analysis (Katata/Kyoto, 1982) 271–306. North-Holland Math. Library 32. North-Holland, Amsterdam, 1984.
  • [15] D. Malicet and G. Poly. Properties of convergence in Dirichlet structures. J. Funct. Anal. 264 (2013) 2077–2096.
  • [16] P. Malliavin. Stochastic calculus of variations and hypoelliptic operators. In Proceedings of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976) 195–263. Wiley, New York–Chichester–Brisbane, 1978.
  • [17] D. Nualart. The Malliavin Calculus and Related Topics. Springer-Verlag, New York, 2006.
  • [18] J. Picard. On the existence of smooth densities for jump processes. Probab. Theory Related Fields 105 (1996) 481–511.
  • [19] E. Priola and J. Zabczyk. Densities for Ornstein–Uhlenbeck processes with jumps. Bull. Lond. Math. Soc. 41 (2009) 41–50.
  • [20] J. Ren and S. Watanabe. A convergence theorem for probability densities and conditional expectations of Wiener functionals. In Dirichlet Forms and Stochastic Processes 335–344. de Gruyter, Berlin, 1995.
  • [21] L. Rey-Bellet and L. E. Thomas. Asymptotic behavior of thermal nonequillibrium steady states for a driven chain of anharmonic oscillators. Comm. Math. Phys. 215 (1) (2000) 1–24.
  • [22] F. Y. Wang. Harnack Inequalities for Stochastic Partial Differential Equations. Springer, New York, 2013.
  • [23] F. Y. Wang and J. Wang. Harnack inequalities for stochastic equations driven by Lévy noise. J. Math. Anal. Appl. 410 (1) (2014) 513–523.
  • [24] K. Yosida. Functional Analysis. Springer-Verlag, Berlin, 1979.
  • [25] X. Zhang. Derivative formula and gradient estimate for SDEs driven by $\alpha$-stable processes. Stochastic Process. Appl. 123 (4) (2013) 1213–1228.
  • [26] X. Zhang. Densities for SDEs driven by degenerate $\alpha $-stable processes. Ann. Probab. 42 (5) (2014) 1885–1910.
  • [27] X. Zhang. Fundamental solution of kinetic Fokker–Planck operator with anisotropic nonlocal dissipativity. SIAM J. Math. Anal. 46 (3) (2014) 2254–2280.