Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

The quenched limiting distributions of a charged-polymer model

Nadine Guillotin-Plantard and Renato Soares dos Santos

Full-text: Open access

Abstract

The limit distributions of the charged-polymer Hamiltonian of Kantor and Kardar [Bernoulli case] and Derrida, Griffiths and Higgs [Gaussian case] are considered. Two sources of randomness enter in the definition: a random field $q=(q_{i})_{i\geq1}$ of i.i.d. random variables, which is called the random charges, and a random walk $S=(S_{n})_{n\in\mathbb{N}}$ evolving in $\mathbb{Z}^{d}$, independent of the charges. The energy or Hamiltonian $K=(K_{n})_{n\geq2}$ is then defined as

\[K_{n}:=\sum_{1\leq i<j\leq n}q_{i}q_{j}\mathbf{1}_{\{S_{i}=S_{j}\}}.\] The law of $K$ under the joint law of $q$ and $S$ is called “annealed,” and the conditional law given $q$ is called “quenched.” Recently, strong approximations under the annealed law were proved for $K$. In this paper we consider the limit distributions of $K$ under the quenched law.

Résumé

Les lois limites de l’hamiltonien dans le modèle de polymère chargé introduit par Kantor et Kardar dans le cas Bernoulli et par Derrida, Griffiths et Higgs dans le cas gaussien sont considérées. Deux aléas interviennent dans la définition : un champ aléatoire $q=(q_{i})_{i\geq1}$ de variables aléatoires i.i.d., appelées charges et une marche aléatoire $S=(S_{n})_{n\in\mathbb{N}}$ dans $\mathbb{Z}^{d}$, indépendante des charges. L’énergie ou hamiltonien $K=(K_{n})_{n\geq2}$ est définie par

\[K_{n}:=\sum_{1\leq i<j\leq n}q_{i}q_{j}\mathbf{1}_{\{S_{i}=S_{j}\}}.\] La loi de $K$ sous la loi conjointe de $q$ et $S$ est appelée « annealed » et la loi conditionnelle sachant $q$ est appelée « quenched ». Récemment, des approximations fortes sous la loi annealed ont été prouvées pour $K$. Dans ce papier, nous considérons les lois limites de $K$ sous la loi quenched.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 52, Number 2 (2016), 703-725.

Dates
Received: 22 January 2014
Revised: 24 September 2014
Accepted: 7 October 2014
First available in Project Euclid: 4 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1462367890

Digital Object Identifier
doi:10.1214/14-AIHP654

Mathematical Reviews number (MathSciNet)
MR3498006

Zentralblatt MATH identifier
1342.60168

Subjects
Primary: 60G50: Sums of independent random variables; random walks 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60F05: Central limit and other weak theorems

Keywords
Random walk Polymer model Self-intersection local time Limit theorems Law of the iterated logarithm Martingale

Citation

Guillotin-Plantard, Nadine; dos Santos, Renato Soares. The quenched limiting distributions of a charged-polymer model. Ann. Inst. H. Poincaré Probab. Statist. 52 (2016), no. 2, 703--725. doi:10.1214/14-AIHP654. https://projecteuclid.org/euclid.aihp/1462367890


Export citation

References

  • [1] M. Becker and W. König. Moments and distribution of the local times of a transient random walk on $\mathbb{Z}^{d}$. J. Theoret. Probab. 22 (2009) 365–374.
  • [2] J. Černý. Moments and distribution of the local time of a two-dimensional random walk. Stochastic Process. Appl. 117 (2) (2007) 262–270.
  • [3] X. Chen. Limit laws for the energy of a charged polymer. Ann. Inst. Henri Poincare Probab. Stat. 44 (2008) 638–672.
  • [4] X. Chen and D. Khoshnevisan. From charged polymers to random walk in random scenery. In Optimality: The 3rd E.L. Lehmann Symposium 237–251. IMS Lecture Notes Monogr. Ser. 57. Inst. Math. Statist., Beachwood, OH, 2009.
  • [5] B. Derrida, B. Griffiths and P. G. Higgs. A model of directed walks with random self-interactions. Europhys. Lett. 18 (4) (1992) 361–366.
  • [6] Y. Derriennic and M. Lin. The central limit theorem for Markov chains started at a point. Probab. Theory Related Fields 125 (1) (2003) 73–76.
  • [7] R. Durrett. Probability: Theory and Examples, 3rd edition. Thomson, Brooks Cole, Belmont, CA, 2005.
  • [8] K. Fleischmann, P. Mörters and V. Wachtel. Moderate deviations for random walk in random scenery. Stochastic Process. Appl. 118 (2008) 1768–1802.
  • [9] N. Guillotin-Plantard and J. Poisat. Quenched central limit theorems for random walks in random scenery. Stochastic Process. Appl. 123 (4) (2013) 1348–1367.
  • [10] N. Guillotin-Plantard, Y. Hu and B. Schapira. The quenched limiting distributions of a one-dimensional random walk in random scenery. Electron. Commun. Probab. 18 (85) (2013) 1–7.
  • [11] D. L. Hanson and F. T. Wright. Some convergence results for weighted sums of independent random variables. Z. Wahrsch. Verw. Gebiete 19 (1971) 81–89.
  • [12] Y. Hu and D. Khoshnevisan. Strong approximations in a charged-polymer model. Period. Math. Hungar. 61 (1–2) (2010) 213–224.
  • [13] N. C. Jain and W. E. Pruitt. The range of transient random walk. J. Anal. Math. 24 (1971) 369–393.
  • [14] Y. Kantor and M. Kardar. Polymers with random self-interactions. Europhys. Lett. 14 (5) (1991) 421–426.
  • [15] H. Kesten and F. Spitzer. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1) (1979) 5–25.
  • [16] D. Khoshnevisan and T. M. Lewis. A law of the iterated logarithm for stable processes in random scenery. Stochastic Process. Appl. 74 (1) (1998) 89–121.
  • [17] S. Martinez and D. Pétritis. Thermodynamics of a Brownian bridge polymer model in a random environment. J. Phys. A 29 (1996) 1267–1279.
  • [18] C. M. Newman and A. L. Wright. Associated random variables and martingale inequalities. Z. Wahrsch. Verw. Gebiete 59 (1982) 361–371.
  • [19] V. H. de la Peña and S. J. Montgomery-Smith. Decoupling inequalities for the tail probabilities of multivariate $U$-statistics. Ann. Probab. 23 (1995) 806–816.
  • [20] F. Spitzer. Principles of Random Walks, 2nd edition. Graduate Texts in Mathematics 34. Springer-Verlag, New York, 1976.
  • [21] V. Strassen. An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3 (3) (1964) 211–226.